区域宽频地震波形反演所揭示的2022年1月青海门源MS6.9地震震源破裂过程

朱音杰 罗艳 赵里

朱音杰,罗艳,赵里. 2023. 区域宽频地震波形反演所揭示的2022年1月青海门源MS6.9地震震源破裂过程. 地震学报,45(3):1−15 doi: 10.11939/jass.20220148
引用本文: 朱音杰,罗艳,赵里. 2023. 区域宽频地震波形反演所揭示的2022年1月青海门源MS6.9地震震源破裂过程. 地震学报,45(3):1−15 doi: 10.11939/jass.20220148
Zhu Y J,Luo Y,Zhao L. 2023. Rupture process of the January 2022 Menyuan,Qinghai MS6.9 earthquake revealed by inversion of regional broadband seismograms. Acta Seismologica Sinica,45(3):1−15 doi: 10.11939/jass.20220148
Citation: Zhu Y J,Luo Y,Zhao L. 2023. Rupture process of the January 2022 Menyuan,Qinghai MS6.9 earthquake revealed by inversion of regional broadband seismograms. Acta Seismologica Sinica45(3):1−15 doi: 10.11939/jass.20220148

区域宽频地震波形反演所揭示的2022年1月青海门源MS6.9地震震源破裂过程

doi: 10.11939/jass.20220148
基金项目: 自然科学基金面上项目 (41974063)、地震科学联合基金(U1939202)和河北省地震科技星火计划攻关项目(DZ202108090110)联合资助
详细信息
    作者简介:

    朱音杰,工程师,主要从事震源参数方面的研究,e-mail: zhuyinj@mail.ustc.edu.cn

    通讯作者:

    罗艳,博士,研究员,主要从事震源参数及区域构造应力场方面的研究,e-mail:luoyan.wind@ gmail.com ·

  • 中图分类号: 315.2

Rupture process of the January 2022 Menyuan,Qinghai MS6.9 earthquake revealed by inversion of regional broadband seismograms

  • 摘要: 基于有限断层模型反演方法,利用区域宽频带数据反演了2022年1月青海门源MS6.9地震的震源破裂过程,并结合地质构造与地震重定位结果判断发震断层走向。综合反演结果表明:此次地震的发震断层走向为NWW向,主要以走滑为主;破裂主要发生在震源两侧,可能存在着双侧破裂,在震后2 s、9 s出现破裂极大值,最大错动量约为1.5 m,位于深度约6 km处,发生明显破裂的深度约为16 km,地表破裂长度约20 km;此次地震释放的标量地震矩为1.23×1019 N·m,相当于矩震级MW6.7。地震能量主要在前15 s释放;发震断层面的倾角为84.6°,接近于垂直,由于破裂范围较大,所以发生明显错动分布的地表投影也长达34 km。

     

  • 图  1  青藏高原东北缘构造背景和历史地震活动

    (a) 青藏高原东北缘2010—2022年ML3.0地震分布及MS≥5.0地震的震源机制解,图中红色六角星为两次MS≥6.0地震的震中位置;沙滩球为MS≥5.0地震的震源机制解;红线为断裂带;(b) 2022年1月门源MS6.9地震的震中及周边MS≥5.0地震的震源机制解,F1:肃南—祁连断裂,F2:托莱山断裂;F3:冷龙岭断裂;(c) 研究区位置及块体运动方向示意图,图中红色箭头指示地块运动方向,黑色方框为研究区

    Figure  1.  Tectonic settings,historical earthquakes and focal mechanisms of MS≥5.0 earthquakes in the northeastern margin of Tibetan Plateau

    (a) Distribution of ML3.0 earthquakes and focal mechanisms of MS≥5.0 earthquakes in the northeastern margin of Tibetan Plateau from January 2010 to January 2022, where red stars are epicenters of two MS≥6.0 earthquakes,beach balls show focal mechanisms of the earthquakes of MS≥5.0;(b) Epicenter of the January 2022 Menyuan MS6.9 earthquake and focal mechanisms of MS≥5.0 earthquakes in the surrounding region,F1:Sunan-Qilian fault;F2:Tuolaishan fault;F3:Lenglongling fault; (c) Location of study area and the schematic illustration of block motion directions,where red arrows indicate the directions of block movements,and the black box shows the study area

    图  4  台站(蓝色三角形)分布图(a)和以节面Ⅰ为断层面的反演破裂过程的波形拟合(b)

    黑色与红色波形分别为观测与理论波形;波形左侧大写字母E,N,Z分别表示东西、南北、垂直三个分量,波形上方数字为最大振幅

    Figure  4.  Station distribution (blue triangles)(a) and waveform fitness when using nodal plane Ⅰ as the fault plane in slip distribution inversion (b)

    Black and red traces are observed and synthetic waveforms,respectively. Capital letters on the left stand for the east-west,north-south and vertical components. The number above each trace indicates the maximum amplitude of the data

    图  2  本研究中用来反演震源机制解及破裂过程的地壳分层速度模型

    Figure  2.  Layered crustal velocity model used in the inversions of focal mechanism and rupture process in this study

    图  3  2022年1月门源MS6.9地震(图a中星形所示)的余震分布

    (a) 地表投影;(b) 在AB剖面上的投影;(c) 在CD剖面上的投影

    Figure  3.  Distribution of the aftershocks of the January 2022 Menyuan MS6.9 earthquake

    (a) Projection of aftershocks on the surface;(b) Projection of aftershocks on the cross section AB; (c) Projection of aftershocks on the cross section CD

    图  5  以震源机制解中节面Ⅰ为断层面反演得到的震源破裂过程

    (a) 错动在断层面上的分布黑色箭头表示破裂错动方向,黑色等值线为破裂开始时间,蓝色五角星为震源位置;(b) 地震矩释放率函数

    Figure  5.  Slip distribution obtained by using nodal plane I in the focal mechanism solution as the fault plane

    (a) Slip distribution on the fault plane; black arrows represent both the amount (length) and direction of slip;blue star shows the hypocentral location;(b) Seismic moment release rate as a function of time

    图  6  门源主震三维模型下地震错动分布

    Figure  6.  The fault slip distribution in the 3D model of Menyuan earthquake

    图  7  门源主震震源错动分布在地表的投影

    投影中颜色代表错动量大小,蓝色五角星为震中位置,灰色圆圈为余震分布

    Figure  7.  Surface projection of the fault slip distribution of Menyuan earthquake

    In the projection,the color indicates the amount of slip;the blue star is the epicentral location;the gray circles are the aftershocks

  • 陈文彬. 2003. 河西走廊及邻近地区最新构造变形基本特征及构造成因分析[D]. 北京: 中国地震局地质研究所: 59–69.
    Chen W B. 2003. Principal features of tectonic deformation and their generation mechanism in the Hexi Corridorand its adjacent regions since late Quaternary[D]. Beijing: Institute of Geology, China Earthquake Administration: 59–69(in Chinese).
    范莉苹,李珀任,廖诗荣,蒋策,房立华. 2022. 2022 年 1 月 8 日青海门源 MS6.9 地震余震序列精定位研究[J]. 地震学报,35(2):138–145.
    Fan L P,Li B R,Liao S R,Jiang C,Fang L H. 2022. Precise relocation of the aftershock sequences of the 2022 M6.9 Menyuan earthquake[J]. Earthquake Science,35(2):138–145 (in Chinese). doi: 10.1016/j.eqs.2022.01.021
    国家地震局地质研究所, 宁夏回族自治区地震局. 1990. 海原活动断裂带[M]. 北京: 地震出版社. 99–138.
    Institute of Geology, State Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. 1990. Haiyuan Active Fault System [M]. Beijing: Seismological Press: 99–138 (in Chinese).
    何文贵,刘百篪,袁道阳,杨明. 2000. 冷龙岭活动断裂的滑动速率研究[J]. 西北地震学报,22(1):90–97.
    He W G,Liu B C,Yuan D Y,Yang M. 2000. Research on slip rates of the Lenglongling active fault zone[J]. Northwestern Seismological Journal,22(1):90–97 (in Chinese).
    何文贵,袁道阳,葛伟鹏,罗浩. 2010. 祁连山活动断裂带中东段冷龙岭断裂滑动速率的精确厘定[J]. 地震,30(1):131–137. doi: 10.3969/j.issn.1000-3274.2010.01.015
    He W G,Yuan D Y,Ge W P,Luo H. 2000. Determination of the slip rate of the Lenglongjing fault in the middle and eastern segments of the Qilian mountain active fault zone.[J]. Earthquake,30(1):131–137 (in Chinese).
    韩帅,吴中海,高扬,卢海峰. 2022. 2022年1月8日青海门源Ms6.9地震地表破裂考察的初步结果及对冷龙岭断裂活动行为和区域强震危险性的启示[J]. 地质力学学报,28(2):155–168.
    Han S,Wu Z H,Gao Y,Lu H F. 2022. Surface rupture investigation of the 2022 Menyuan MS6.9 earthquake,Qinghai,China:Implications for the fault behavior of the Engorging fault and regional intense earthquake risk[J]. Journal of Geomechanics,28(2):155–168 (in Chinese).
    韩竹军, 牛鹏飞, 李科长, 吕丽星. 2022. 2022年1月8日青海门源6.9级地震的一些初步认识[EB/OL]. [2022-01-08]. https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html.
    Han Z J, Niu P F, Li K Z, Lv L X. 2022. Primary understanding of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province [EB/OL]. [2022-01-08]. https://www.eq-igl.ac.cn/zhxw/info/2022/36632.html (in Chinese).
    李智敏,盖海龙,李鑫,袁道阳,谢虹,姜文亮,李永生,苏琦. 2022. 2022年青海门源MS6.9级地震发震构造和地表破裂初步调查[J]. 地质学报,96(1):331–335.
    Li Z M,Gai H L,Li X,Yuan D Y,Xie H,Jiang W L,Li Y S,Su Q. 2022. Seismogenic fault and coseismic surface deformation of the Menyuan Ms6.9 earthquake in Qinghai,China[J]. Acta Geologica Sinica,96(1):331–335 (in Chinese).
    李振洪,韩炳权,刘振江,张苗苗,余琛,陈博,刘海辉,杜静,张双成,朱武,张勤,彭建兵. 2022. InSAR 数据约束下的 2016 年和 2022 年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版),7(6):887–897.
    Li Z H,Han B Q,Liu Z J,Zhang M M,Yu C,Chen B,Liu H H,Du J,Zhang S C,Zhu W,Zhang Q,Peng J B. 2022. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan,Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University,47(6):887–897 (in Chinese).
    李祥,万永革,崔华伟,高熹微,黄骥超,张珊珊. 2016. 2016年1月21日青海门源 MS6.4 地震构造应力场[J]. 华北地震科学,34(2):36–41. doi: 10.3969/j.issn.1003-1375.2016.02.007
    Li X,Wan Y G,Cui H W,Gao X W,Huang J C,Zhang S S. 2016. Tectonic stress field of 2016,MS6.4 Menyuan,Qinghai earthquake[J]. North China Earthquake Sciences,34(2):36–41 (in Chinese).
    刘成利,郑勇,葛粲,熊熊,许厚泽. 2013. 2013年芦山7.0级地震的动态破裂过程[J]. 中国科学:地球科学,43(6):1020–1026.
    Liu C L, Zheng Y, Ge C, Xiong X, Xu H Z. 2013. Rupture Process of the M7.0 Lushan earthquake[J], 2013. Science China: Earth Sciences, doi: 10.1007/s11430-013-4639-9 (in Chinese).
    刘泽民,张广伟,梁姗姗,邹立晔. 2022. 2022年青海门源 MS6.9地震余震的空间迁移特征[J]. 地震工程学报,44(1):475–487.
    Liu Z M,Zhang G W,Liang S S,Zou L Y. 2022. Spatial migration characteristics of the aftershock sequence of the Menyuan,Qinghai MS6.9 earthquake in 2022[J]. China Earthquake Engineering Journal,44(1):475–487 (in Chinese).
    刘成利,郑勇,熊熊,付芮,单斌,刁法启. 2014. 利用区域宽频带数据反演鲁甸Ms6.5 级地震震源破裂过程[J]. 地球物理学报,57(9):3028–3037. doi: 10.6038/cjg20140927
    Liu C L,Zheng Y,Xiong X,Fu R,Shan B,Diao F Q. 2014. Rupture process of Ms6.5 Ludian earthquake constrained by regional broadband seismograms[J]. Chinese Journal of Geophysics,57(9):3028–3037 (in Chinese).
    潘家伟,李海兵,Marie-Luce CHEVALIER,刘栋梁. 2022. 2022年青海门源MS6.9地震地表破裂带及发震构造研究[J]. 地质学报,96(1):215–231. doi: 10.3969/j.issn.0001-5717.2022.01.018
    Pan J W,Li H B,CHEVALIER M L,Liu D L. 2022. Coseismic surface rupture and seismogenic structure of the 2022 MS6.9 Menyuan earthquake,Qinghai Province,China[J]. Acta Geologica Sinica,96(1):215–231 (in Chinese).
    石富强,邵志刚,占伟,丁晓光,朱琳,李玉江. 2018. 青藏高原东北缘活动断裂剪切模量及应力状态数值模拟[J]. 地球物理学报,61(9):3651–3663. doi: 10.6038/cjg2018L0631
    Shi F Q,Shao Z G,Zhan W,Ding X G,Zhu L,Li Y J. 2018. Numerical modeling of the shear modulus and stress state of active faults in the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics,61(9):3651–3663 (in Chinese).
    [31] 王琼,高原. 2014. 青藏东南缘背景噪声的瑞利波相速度层析成像及强震活动[J]. 中国科学:地球科学,44(11):2440–2450.
    Wang Q,Gao Y. 2014. Rayleigh wave phase velocity tomography and strong earthquake activity on the southeastern front of the Tibetan Plateau[J]. Science China Earth Sciences,57:2532–2542 (in Chinese). doi: 10.1007/s11430-014-4908-2
    王卫民, 何建坤, 郝金来. 2022. 2022年1月8日青海门源M6.9地震震源破裂过程反演初步结果. 学术讨论资料.
    WANG Wei-min, HE Jian-kun, HAO Jin-lai. 2022. Rupture process of the 2022 M6.9 Menyuan earthquake Qinghai China. Academic discussion materials. (in Chinese).
    徐锡伟,吴熙彦,于贵华,谭锡斌,李康. 2017. 中国大陆高震级地震危险区判定的地震地质学标志及其应用[J]. 地震地质. 39(2),:219–275.
    Xu X W,Wu X Y,Yu G H,Tan X B,Li K. 2017. Seismo-Geological signatures for identifying M≥7.0 earthquake risk areas and their premilimary application in Mainland China[J]. Seismology and Geology,39(2):219–275 (in Chinese).
    许英才,郭祥云,冯丽丽. 2022. 2022年1月8日青海门源MS6.9地震序列重定位和震源机制研究[J]. 地震学报,44(2):1–15.
    Xu Y C,Guo X Y,Feng L L. 2022. Relocation and focal mechanism solutions of the MS6.9 Menyuan earthquake sequence on January 8,2022 in Qinghai Province[J]. Acta Seismologica Sinica,44(2):1–15 (in Chinese).
    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278. doi: 10.3321/j.issn:0001-5717.2004.02.017
    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of late Quaternary active tectonics in northeastern margin of Qinghai-Xizang plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).
    张勇,许力生,陈运泰,汪荣江. 2014. 2014年2月12日于田MW6.9地震破裂过程初步反演:兼论震源机制对地震破裂过程反演的影响[J]. 地震学报,36(2):159–164. doi: 10.3969/j.issn.0253-3782.2014.02.001
    Zhang Y,Xu L S,Chen Y T,Wang R J. 2014. Fast inversion for the rupture process of the 12 February 2014 Yutian MW6.9 earthquake:Discussion on the impacts of focal mechanism on rupture process inversions[J]. Acta Seismologica Sinica,36(2):159–164 (in Chinese).
    张勇,陈运泰,许力生,魏星,金明培,张森. 2015. 2014年云南鲁甸Mw6.1地震:一次共轭破裂地震[J]. 地球物理学报,58(1):153–162. doi: 10.6038/cjg20150113
    Zhang Y,Chen Y T,Xu L S,Wei X,Jin M P,Zhang S. 2015. The 2014 MW6.1 Ludian,Yunnan,earthquake:A complex conjugated ruptured earthquake[J]. Chinese Journal of Geophysics,58(1):153–162 (in Chinese).
    左可桢,陈继锋. 2018. 门源地区地壳三维体波速度结构及地震重定位研究[J]. 地球物理学报,61(7):2788–2801. doi: 10.6038/cjg2018L0537
    Zuo K Z,Chen J F. 2018. 3D body―wave velocity structure of crust and relocation of earthquakes in the Menyuan area[J]. Chinese Journal of Geophysics,61(7):2788–2801 (in Chinese).
    [47] 周琳,季灵运,李长军,李君. 2022. 利用小震和 GPS 资料分析冷龙岭地区现今变形过程与地震活动[J]. 地震研究,45(3):416–423.
    Zou L, Ji L Y, Li C J, L J. Study on Current Deformation Process and Seismicity of Lenglongling Area based on Small Earthquakes and GPS Data[J]. Journal of Seismological Research, 45(3): 416–423(in Chinese).
    朱音杰,罗艳,赵里,田建慧. 2022. 利用区域宽频地震数据反演2021年5月云南漾濞Ms6.4地震震源破裂过程[J]. 地球物理学报,65(3):1021–1031. doi: 10.6038/cjg2022P0443
    Zhu Y J,Luo Y,Zhao L,Tian J H. 2022. Rupture process of Yunnan Yangbi MS6.4 earthquake constrained by regional broadband seismograms[J]. Chinese Journal of Geophysics,65(3):1021–1031 (in Chinese).
    钟世军,吴建平,房立华,王未来,范莉苹,王怀富. 2017. 青藏高原东北缘及周边地区基于程函方程的面波层析成像[J]. 地球物理学报,60(6):2304–2314. doi: 10.6038/cjg20170622
    Zhong S J,Wu J P,Fang L H,Wang W L,Fan L P,Wang H F. 2017. Surface wave Eikonal tomography in and around the northeastern margin of the Tibetan plateau[J]. Chinese Journal of Geophysics,60(6):2304–2314 (in Chinese).
    [53] 张勇,许力生,陈运泰. 2015. 2015年尼泊尔Mw7.9地震破裂过程:快速反演与初步联合反演[J]. 地球物理学报,58(5):1804–1811. doi: 10.6038/cjg20150530
    Zhang Y,Xu L S,Chen Y T. 2015. Rupture process of the 2015 Nepal Mw7.9 earthquake:Fast inversion and preliminary joint inversion[J]. Chinese Journal of Geophysics,58(5):1804–1811 (in Chinese).
    中国地震局地球物理研究所. 2022. 2022年01月08日青海海北州门源县6.9级地震科技支撑简报[EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html.
    Institute of Geophysics, China Earthquake Administration. 2022. A brief of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province [EB/OL]. [2022-01-10]. https://www.cea-igp.ac.cn/kydt/278809.html (in Chinese).
    中国地震局地质研究所. 2022. 2022年01月08日青海海北州门源县6.9级地震科技支撑简报[EB/OL]. [2022-01-14]. https://www.eq-igl.ac.cn/kydt/info/2022/36614.html.
    Institute of Geology, China Earthquake Administration. 2022. A brief of the MS6.9 Menyuan earthquake on January 8, 2022 in Qinghai Province [EB/OL]. [2022-01-14]. https://www.eq-igl.ac.cn/kydt/info/2022/36614.html (in Chinese).
    中国地震台网中心. 地震目录[EB/OL]. [2022-01-08]. https://news.ceic.ac.cn/index.html?time=1664447143.
    China Earthquake Networks Center. 2022. Seismic catalogue [EB/OL]. [2022-01-08]. https://news.ceic.ac.cn/index.html?time=1664447143 (in Chinese).
    Aki K, Richards P G. (1980). Quantitative Seismology: Theory and Methods[M]. H. Freeman, San Francisco, California.
    Burchfiel B C,Hodges K V,Royden L H. 1987. Geology of Panamit Valley-Saline Valley pull-apart system,California:Palinspastic evidence for low-angle geometry of a Neogene range-bounding fault[J]. J Geophys Res,82:10422–10426.
    England P,Molnar P. 1997. Active deformation of Asia:From kinematics to dynamics[J]. Science,278(5338):647–650. doi: 10.1126/science.278.5338.647
    Guo P,Han Z J,Dong S,Yuan R,Xie Z. 2019a. Surface rupture and slip distribution along the Lenglongling fault in the NE Tibetan Plateau:Implications for faulting behavior[J]. J Asian Earth Sci,172:190–207. doi: 10.1016/j.jseaes.2018.09.008
    Guo P,Han Z J,Mao Z,Xie Z,Dong S,Gao F,Gai H L. 2019b. Paleo earthquakes and Rupture Behavior of the Lenglongling Fault:Implications for Seismic Hazards of the Northeastern Margin of the Tibetan Plateau[J]. J Geophy Res:Solid Earth,124(2):1520–1543. doi: 10.1029/2018JB016586
    Guo P,Han Z J,Gao F,Zhu C H,Gai H L. 2020. A new tectonic model for the 1927 M8.0 Gulang earthquake on the NE Tibetan plateau[J]. Tectonics,39(9):e2020TC006064.
    Gaudemer Y,Tapponnier P,Meyer B ,Peltzer G,Guo S,Chen Z. 1995. Partitioning of crustal slip between linked,active faults in the eastern Qilian Shan,and evidence for a major seismic gap,the ‘Tianzhu gap’,on the western Haiyuan Fault,Gansu(China)[J]. Geophys J Int,120(3):599–645.
    Hsieh M C,Zhao Li,Ji C,Ma K F. 2016. Efficient inversions for earthquake slip distributions in 3D structures[J]. Seismol Res Lett,87(6):1342–1354. doi: 10.1785/0220160050
    Han S C, Zhang H J, Xin H L, Shen W S, Yao H J. 2021. USTClitho2.0: Updated Unified Seismic Tomography Models for Continental China Lithosphere from Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion Data[J]. Seismol Res Lett, .
    Ji C, Wald D J, Helmberger D V. . 2002. Source description of the1999 Hector Mine, California, earthquake, part I: Wavelet domain inversion theory and resolution analysis[J], Bull Seismol Soc Am, 92: 1192–1207.
    Ji C, Helmberger D V, Wald D J, Ma K F. 2003. Slip history and dynamic implications of the 1999 Chi-Chi, Taiwan, earthquake[J]. J Geophys. Res. 108(B9): 2412.
    Lasserre C,Gaudemer Y,Tapponnier P,Meriaux A,Yuan D,Ryerson f j,Finkel R C,Caffee M W. 2002. Fast late Pleistocene slip rate on the Leng Long Ling segment of the Haiyuan fault,Qinghai,China[J]. J Geophy Res:Solid Earth,107(B11):2276.
    Molnar P,Tapponnier P. 1975. Cenozoic tectonics of Asia:Effects of a continental collision[J]. Science,189(4201):419–426. doi: 10.1126/science.189.4201.419
    Tapponnier P,Xu Z Q,Roger F,Meyer B,Arnaud N,Wittlinger G. 2001. Oblique stepwise rise and growth of the Tibet plateau[J]. Science,294(5547):1671–1677. doi: 10.1126/science.105978
    Replumaz A,Tapponnier P. 2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks[J]. J Geophy Res 108(B6),:2285.
    Royden L,Burchfiel B C,King R W. 1997. Surface deforlations of a population of very small rift-related normal faults[J]. Geology 24,:683–686.
    Shao G,Li X Y,Ji C. 2011. Focal mechanism and slip history of the 2011 Mw9.1 of the Pacific coast of Tohoku Earthquake,constrained with teleseismic body and waves[J]. Earth Planets Space,63(7):559–564. doi: 10.5047/eps.2011.06.028
    Tapponnier P, Molnar P. 1977. Active faulting and tectonics in China. J Geophy Res[J], v. 82, p. 2905–2930.
    Tapponnier P,Meyer B,Avouac J P,Peltzer G,Gaudemer Y,Guo S M,Xiang H F,Yin K L,Chen Z T,Cai S H,Dai H G. 1990. Active thrusting and folding in the Qilian Shan,and decoupling between upper crust and mantle in Northeastern Tibet[J]. Earth Planet Sci Lett,v.97:382–403.
    Wei S,Helmberger D,Avouac J P. 2013. Modeling the 2012 Wharton basin earthquakes off-Sumatra:Complete lithospheric failure[J]. J Geophy Res:Solid Earth,118(7):3592–3609. doi: 10.1002/jgrb.50267
    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophy Res:Solid Earth,125(2):e2019JB018774.
    Xu X W,Robert S. Yeats,Yu G H 2010. Five short historical earthquake surface ruptures near the Silk Road,Gansu Province,China[J]. Bull Seismol Soc Am,100(2):541–561. doi: 10.1785/0120080282
    Zhu LP,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys. J Int.,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x
    Zhang P Z,Molnar P,Xu X W. 2007. Late Quaternary and present-day rates of slip along the Altyn Tagh Fault,northern margin of the Tibetan plateau[J]. Tectonics,26(5):TC5010.
    Zhang W Q,Jiao D C,Zhang P Z. 1987. Displacement along the Haiyuan Fault associated with the great 1920 Haiyuan,China,earthquake[J]. Bull Seismol Soc Am,77(1):117–131.
    Zheng W J,Zhang P Z,He W G,Yuan D Y,Shao Y X,Zheng D W. 2013. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan plateau:Evidence from decadal GPS measurements and late Quaternary slip rates on faults[J]. Tectonophysics,584:267–280. doi: 10.1016/j.tecto.2012.01.006
    Zheng X J, Zhang Y, Wang R J, Zhao L, Li W Y, Huang Q H. 2020. Automatic Inversions of Strong-Motion for Finite-Fault Models of Significant Earthquakes in and around Japan[J]. J Geophy Res: Solid Earth. Doi: 10.1029/2020jb019992.
  • 加载中
图(7)
计量
  • 文章访问数:  250
  • HTML全文浏览量:  94
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-16
  • 修回日期:  2022-09-28
  • 网络出版日期:  2022-09-30

目录

    /

    返回文章
    返回