格陵兰岛地区居里面深度

褚伟 徐亚 张健 张倩文 路书鹏 胡琪鑫

褚伟,徐亚,张健,张倩文,路书鹏,胡琪鑫. 2023. 格陵兰岛地区居里面深度. 地震学报,45(3):1−11 doi: 10.11939/jass.20220167
引用本文: 褚伟,徐亚,张健,张倩文,路书鹏,胡琪鑫. 2023. 格陵兰岛地区居里面深度. 地震学报,45(3):1−11 doi: 10.11939/jass.20220167
Chu W,Xu Y,Zhang J,Zhang Q W,Lu S P,Hu Q X. 2023. Curie depth in Greenland area. Acta Seismologica Sinica,45(3):1−11 doi: 10.11939/jass.20220167
Citation: Chu W,Xu Y,Zhang J,Zhang Q W,Lu S P,Hu Q X. 2023. Curie depth in Greenland area. Acta Seismologica Sinica45(3):1−11 doi: 10.11939/jass.20220167

格陵兰岛地区居里面深度

doi: 10.11939/jass.20220167
基金项目: 国家基金委项目(42074092)和中国科学院青年创新促进会(2016064)联合资助
详细信息
    作者简介:

    褚伟,在读博士研究生,主要从事海洋地球物理方面的研究,e-mail:chuwei18@mails.ucas.ac.cn

    通讯作者:

    徐亚,博士,副研究员,主要从事海洋地球物理、综合地球物理研究,e-mail:xuya@mail.iggcas.ac.cn

  • 中图分类号: P314.2

Curie depth in Greenland area

  • 摘要: 基于全球磁异常数据,利用质心法计算格陵兰岛地区的居里面深度,并结合最新的热流资料、地壳结构和大洋年龄进行分析,加深了对研究区热结构的认识。首先,总结了磁性体满足不同分布时,居里面深度计算的理论公式和校正因子的选择。在格陵兰岛地区应用分形分布,结果表明,研究区居里面深度$ {h}_{{\rm{b}}} $在40 km以内,平均值约为20 km,估算误差约为2.7 km。校正$ {h}_{{\rm{b}}} $得到地形到居里面的距离$ {h}_{{\rm{m}}} $和沉积层底界面到居里面的距离$ {h}_{{\rm{c}}} $,并根据不同的地壳类型对地表实测热流数据校正得到$ {Q}_{{\rm{s}}} $。经过对比发现$ {h}_{{\rm{m}}} $$ {Q}_{{\rm{s}}} $基本成负相关,计算结果合理。进一步分析表明研究区居里面总体上浅于莫霍面,但在格陵兰岛北部部分区域居里面深于莫霍面,在大洋地区,$ {h}_{{\rm{c}}} $随洋壳年龄的增大而增大。

     

  • 图  1  研究区地形图

    Figure  1.  The topography map of the studied area

    图  2  研究区磁异常图

    Figure  2.  The map of magnetic anomaly in the studied area

    图  3  研究区热流实测数据(a)和机器学习预测数据(b)(数据来源于Colgan et al,2022

    Figure  3.  Geothermal heat flux in the studied area by measuring (a) and predicting using machine learning method (b)(data from Colgan et al,2022

    图  4  某一窗口在高波数段估计$ {h}_{\mathrm{t}} $ (a)和低波数段估计${h_0}$ (b)的示例

    Figure  4.  Example of estimating $ {h}_{{\rm{t}}} $ at high wavenumber (a) and estimating $ {h}_{0} $ at low wavenumber (b) in a certain window

    图  5  居里面深度$ {h}_{\mathrm{b}}(\mathrm{a})\mathrm{及} $估算误差$ \delta $ (b)

    Figure  5.  Curie depth $ {h}_{\mathrm{b}}(\mathrm{a}) $ and estimation error $ \delta $ (b)

    图  6  陆地(a)与海洋(b)的地层层位结构

    Figure  6.  Stratigraphic structure of land (a) and ocean (b)

    图  7  从地形到居里面的距离hm (a)及校正之后的热流Qs (b)

    Figure  7.  The distance from topography to Curie depth hm (a) and the corrected heat flow Qs (b)

    图  8  $ {Q}_{\mathrm{s}} $$ {h}_{\mathrm{m}} $的相关性

    Figure  8.  Correlations between $ {Q}_{\mathrm{s}} $ and $ {h}_{\mathrm{m}} $

    图  9  研究区居里面深度与地壳结构和洋壳年龄的对比分析

    (a) 莫霍面深度(数据来源于Steffen et al,2017);(b) 沉积层厚度(数据来源于Straume et al,2019);(c) 沉积层底界面到居里面的距离$ {h}_{\mathrm{c}} $;(d) 大洋地壳年龄(数据来源于Seton et al,2020

    Figure  9.  Analysis of Curie depth with crustal structure and ocean crustal age in the studied area

    (a) Moho depth (data from Steffen et al,2017);(b) Sediment thickness (data from Straume et al,2019);(c) The distance from the top crystalline basement to Curie depth $ {h}_{\mathrm{c}} $; (d) Ocean crustal age (data from Seton et al,2020

    表  1  校正因子的选择

    Table  1.   Selection of correction factor

    理论计算公式$ {h}_{\mathrm{t}} $$ {h}_{0} $
    $\mathrm{l}\mathrm{n} ( |2\mathrm{\pi }{k|}^{\frac{\beta -1}{2} }{A}_{\Delta T} ) $$\mathrm{l}\mathrm{n} ( |2\mathrm{\pi }{k|}^{\frac{\beta -3}{2} }{A}_{\Delta T} ) $
    随机不相关分布假设$\;\beta =1$
    统计分布假设$\;\beta=3.9$
    分形分布假设$\; \beta \in [ \mathrm{3,5} ] $
    下载: 导出CSV
  • [1] 江伟伟,李磊,王春晖,杜凌. 2011. 格陵兰岛附近海域海平面变化的初步研究[J]. 中国海洋大学学报,41(10):10–16.
    [2] Jiang W W,Li L,Wang C H,Du L. 2011. A preliminary analysis on sea level change in the seas near the Greenland[J]. Periodical of Ocean University of China,41(10):10–16 (in Chinese).
    [3] Amante C, Eakins B W. 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis[R]. NOAA Technical Memorandum Nesdis NDGC-24, Boulder: NOAA.
    [4] Artemieva I M. 2019. Lithosphere thermal thickness and geothermal heat flux in Greenland from a new thermal isostasy method[J]. Earth-Sci Rev,188:469–481. doi: 10.1016/j.earscirev.2018.10.015
    [5] Bamber J L,Siegert M J,Griggs J A,Marshall S J,Spada G. 2013. Paleofluvial mega-canyon beneath the central Greenland ice sheet[J]. Science,341(6149):997–999. doi: 10.1126/science.1239794
    [6] Colgan W,Wansing A,Mankoff K,Lösing M,Hopper J,Louden K,Ebbing J,Christiansen F G,Ingeman-Nielsen T,Liljedahl L C,MacGregor J A,Hjartarson Á,Bernstein S,Karlsson N B,Fuchs S,Hartikainen J,Liakka J,Fausto R,Dahl-Jensen D,Bjørk A,Naslund J O,Mørk F,Martos Y,Balling N,Funck T,Kjeldsen K K,Petersen D,Gregersen U,Dam G,Nielsen T,Khan A,Løkkegaard A. 2022. Greenland geothermal heat flow database and map (Version 1)[J]. Earth Syst Sci Data,14(5):2209–2238. doi: 10.5194/essd-14-2209-2022
    [7] Kelemework Y,Fedi M,Milano M. 2021. A review of spectral analysis of magnetic data for depth estimation[J]. Geophysics,86(6):J33–J58. doi: 10.1190/geo2020-0268.1
    [8] Li C F,Wang J,Lin J,Wang T T. 2013. Thermal evolution of the North Atlantic lithosphere:New constraints from magnetic anomaly inversion with a fractal magnetization model[J]. Geochem Geophys Geosyst,14(12):5078–5105. doi: 10.1002/2013GC004896
    [9] Li C F,Zhou D,Wang J. 2019. On application of fractal magnetization in Curie depth estimation from magnetic anomalies[J]. Acta Geophys,67(5):1319–1327. doi: 10.1007/s11600-019-00339-6
    [10] Lu Y,Li C F,Wang J,Wan X L. 2022. Arctic geothermal structures inferred from Curie-point depths and their geodynamic implications[J]. Tectonophysics,822:229158. doi: 10.1016/j.tecto.2021.229158
    [11] MacGregor J A,Bottke Jr W F,Fahnestock M A,Harbeck J P,Kjær K H,Paden J D,Stillman D E,Studinger M. 2019. A possible second large subglacial impact crater in northwest Greenland[J]. Geophys Res Lett,46(3):1496–1504. doi: 10.1029/2018GL078126
    [12] Martos Y M,Jordan T A,Catalán M,Jordan T M,Bamber J L,Vaughan D G. 2018. Geothermal heat flux reveals the iceland hotspot track underneath Greenland[J]. Geophys Res Lett,45(16):8214–8222. doi: 10.1029/2018GL078289
    [13] Maus S,Barckhausen U,Berkenbosch H,Bournas N,Brozena J,Childers V,Dostaler F,Fairhead J D,Finn C,von Frese R R B,Gaina C,Golynsky S,Kucks R,Lühr H,Milligan P,Mogren S,Müller R D,Olesen O,Pilkington M,Saltus R,Schreckenberger B,Thébault E,Caratori Tontini F. 2009. EMAG2:A 2–arc min resolution Earth Magnetic Anomaly Grid compiled from satellite,airborne,and marine magnetic measurements[J]. Geochem Geophys Geosyst,10(8):Q08005.
    [14] Rogozhina I,Petrunin A G,Vaughan A P M,Steinberger B,Johnson J V,Kaban M K,Calov R,Rickers F,Thomas M,Koulakov I. 2016. Melting at the base of the Greenland ice sheet explained by Iceland hotspot history[J]. Nat Geosci,9(5):366–369. doi: 10.1038/ngeo2689
    [15] Ross H E,Blakely R J,Zoback M D. 2006. Testing the use of aeromagnetic data for the determination of Curie depth in California[J]. Geophysics,71(5):L51–L59. doi: 10.1190/1.2335572
    [16] Seton M,Müller R D,Zahirovic S,Williams S,Wright N W,Cannon J,Whittaker J M,Matthews K J,McGirr R. 2020. A global data set of present-day oceanic crustal age and seafloor spreading parameters[J]. Geochem Geophys Geosyst,21(10):e2020GC009214.
    [17] Steffen R,Strykowski G,Lund B. 2017. High-resolution Moho model for Greenland from EIGEN-6C4 gravity data[J]. Tectonophysics,706-707:206–220. doi: 10.1016/j.tecto.2017.04.014
    [18] Straume E O,Gaina C,Medvedev S,Hochmuth K,Gohl K,Whittaker J M,Abdul Fattah R,Doornenbal J C,Hopper J R. 2019. GlobSed:Updated total sediment thickness in the world's oceans[J]. Geochem Geophys Geosyst,20(4):1756–1772. doi: 10.1029/2018GC008115
    [19] Toyokuni G,Matsuno T,Zhao D P. 2020a. P wave tomography beneath Greenland and surrounding regions 1:Crust and upper mantle[J]. J Geophys Res:Solid Earth,125(12):e2020JB019837.
    [20] Toyokuni G,Matsuno T,Zhao D P. 2020b. P wave tomography beneath Greenland and surrounding regions 2:Lower mantle[J]. J Geophys Res:Solid Earth,125(12):e2020JB019839.
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  28
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-09
  • 修回日期:  2022-10-26
  • 网络出版日期:  2023-04-04

目录

    /

    返回文章
    返回