Relative motions for cross-fault sites of the 1999 MW7.6 Taiwan Chi-Chi earthquake
-
摘要: 为了获得断层地震动准确的残余位移信息,提出了一种变步长网格搜索地震动基线校正处理方法。基于1999年我国台湾MW7.6集集地震强震运动数据,探讨了断层附近地震动的位移特征,又通过地震动时程初始时刻的校正,获得了集集地震多组上、下盘台站之间的相对运动时程数据,分析了分别靠近断层的上、下盘场地之间相对运动的位移时程特征。结果显示,地震动的滑冲效应显著,断层的平均滑冲速度可高达1.4 m/s;断层盘间的相对运动类似于断层地震动的运动特征,且幅值更大;断层的残余位移约是盘间最大相对位移的80%.Abstract: Based on the strong motion data of the 1999 MW7.6 Chi-Chi (Jiji) earthquake in Taiwan region, the relative motion time histories of sites across the fault are studied. In order to obtain accurate residual displacement of near-field ground motion, a base-line correction method using variable step-size grid search is proposed. Through the correction of the initial time of the ground motion history, relative motion histories between the hanging-wall and footwall stations of the Chi-Chi earthquake are obtained. The results show that the fling-step effect of the ground motion is significant, the average slip velocity of the fault plan can be as high as 1.4 m/s; the relative motion between the fault plans is similar to the motion characteristics of the fault ground motions, while the amplitudes are even larger; the residual displacements of the fault are about 80% of the maximum inter-plan relative displacement.
-
Key words:
- Chi-Chi earthquake /
- seismic fault ground motions /
- cross-fault site /
- relative movement /
- fault action
-
4 上盘台站强震记录三分量EW (右),NS (中),UD (右)的位移时程
蓝色划线表示位移的最值;红色划线表示位移初始值或最终值(下图同)
4. Displacement time histories of strong earthquake records at the hanging wall station
The blue line indicates the maximum displacement;The red line indicates the initial or final displacement value,the same below(a) TCU068;(b) TCU052; (c) TCU072;(d) TCU071
图 4 上盘台站强震记录三分量EW (右),NS (中),UD (右)的位移时程
蓝色划线表示位移的最值;红色划线表示位移初始值或最终值(下图同)
Figure 4. Displacement time histories of strong earthquake records at the hanging wall station
The blue line indicates the maximum displacement;The red line indicates the initial or final displacement value,the same below(e) TCU089;(f) TCU078
图 8 上、下盘台站强震相对位移时程典型特征
(a) TCU052-TCU054 EW分量的相对位移时程;(b) TCU072-TCU067 EW分量的相对位移时程;(c) TCU072-TCU067 UD分量的相对位移时程
Figure 8. Typical characteristics of relative displacement time history of strong earthquake records at hanging wall and footwall stations
(a) TCU052—054 E-W relative displacement time history (b) TCU072—067 E-W relative displacement time history (c) TCU072—067 U-D relative displacement time history
图 9 集集地震土木工程断层破坏7例
(a) 石岗大坝(TCU068-TCU103);(b) 北丰桥(TCU068-TCU103);(c) 欢乐谷公寓群(TCU068-TCU103);(d) 第一公园大桥(TCU052-TCU054);(e) 光复中学(TUC071-TCU075);(f) 乌溪桥(TUC071-TCU075);(g) 刘眉桥(TCU078-TCU122)
Figure 9. Seven cases of civil engineering fault failure in Chi-Chi earthquake
(a) Shigang Dam (TCU068-TCU103);(b) Beifeng Bridge (TCU068-TCU103);(c) Happy Valley Apartments (TCU068-TCU103);(d) The First Park Bridge (TCU052-TCU054);(e) Guangfu Middle School (TUC071-TCU075);(f) Wuxi Bridge (TUC071-TCU075);(g) Liumei Bridge (TCU078-TCU122)
图 10 四组上、下盘台站的空间相对位移时程
不同颜色代表不同时间。0 s—20.312 5 s红色;20.312 5 s—40.625 s橘色; 40.625 s—60.937 5 s黄色;60.937 5 s—81.25 s绿色;81.25 s—101.562 5 s浅蓝色;101.562 5 s —121.875 s深蓝色;超过121.875 s 粉红色
Figure 10. Spatial relative displacement time history of the four groups of hanging wall and footwall stations
Different colors represent different times,0 s−20.312 5 s red;20.312 5 s−40.625 s Orange;40.625 s−60.937 5 s Yellow; 60.937 5 s−81.25 s green;81.25 s−101.562 5 s light blue; 101.562 5 s−121.875 s dark blue;Pink for more than 121.875 s(a) TCU068-TCU103;(b)TCU052-TCU054;(c) TCU071-TCU075;(d) TCU078-TCU122
表 1 台湾集集地震地震动台站位置信息
Table 1. Location information of ground motion station of Chi-Chi earthquake in Taiwan region
断层盘 台站 东经/°度(E) 北纬/° (N) 海拔/km (km) 断层距/km (km) 上盘 TCU068 120.8 24.3 0.276 0.071 TCU052 120.7 24.2 0.170 0.092 TCU072 120.8 24.0 0.363 13.021 TCU071 120.8 24.0 0.187 10.003 TCU089 120.9 23.9 0.020 15.277 TCU078 120.8 23.8 0.272 14.402 下盘 TCU103 120.7 24.3 0.222 5.982 TCU054 120.7 24.2 0.097 7.029 TCU067 120.7 24.1 0.073 0.716 TCU075 120.7 24.0 0.096 1.209 TCU120 120.6 24.0 0.228 7.793 TCU118 120.4 24.0 0.008 30.496 TCU076 120.7 24.0 0.103 3.653 TCU129 120.7 23.9 0.110 3.059 TCU122 120.6 23.8 0.075 10.996 CHY024 120.6 23.8 0.085 12.255 数据来源于台湾气象厅公开发行的光盘( Lee et al,2001 )表 2 1999年集集地震上、下盘台站本文所选组对情况
Table 2. Group matching of hanging wall and footwall stations of the 1999 Chi-Chi earthquake in this paper
台站 组队 上盘 TCU068 TCU052 TCU072 TCU071 TCU089 TCU078 下盘 TCU103 TCU054 TCU067 TCU075 TCU075 TCU122 表 3 上盘台站强震记录位移最大值及残余位移
Table 3. Maximum displacement and residual displacement of strong earthquake records at the hanging wall stations
上盘台站 EW NS UD 最大位移/m 残余位移/m 最大位移/m 残余位移/m 最大位移/m 残余位移/m TCU068 7.06 5.81 8.61 5.94 4.52 3.45 TCU052 4.99 3.94 7.18 6.78 3.92 3.16 TCU072 2.02 1.80 2.35 2.00 1.33 1.16 TCU071 1.76 1.19 2.61 0.15 2.26 1.74 TCU089 1.91 1.81 1.37 1.18 0.24 0.03 TCU078 1.21 1.19 0.85 0.66 0.35 0.25 表 4 上、下盘台站强震相对位移最大值及残余位移
Table 4. Maximum relative displacement and residual displacementof strong earthquake records at hanging wall and footwall stations
上、下盘台站 EW分量 NS分量 UD分量 最大位移/m 残余位移/m 最大位移/m 残余位移/m 最大位移/m 残余位移/m TCU068-TCU103 7.54 6.21 9.11 6.47 4.09 3.33 TCU052-TCU054 5.57 4.50 7.81 7.08 3.81 3.29 TCU072-TCU067 3.46 3.02 3.27 2.97 1.59 1.41 TCU071-TCU075 2.89 2.28 2.99 2.52 2.55 1.74 TCU089-TCU067 2.82 2.50 1.72 1.42 0.39 0.26 TCU078-TCU122 2.06 1.82 1.26 1.16 0.35 0.18 表 5 工程破坏现场地表位错与附近断层上、下盘台站位错计算值的比较
Table 5. Comparison of calculated values of surface dislocations at the site of engineering failure with those at the hanging wall and footwall stations nearby faults
工程名称 上、下盘台站 台站间距/km 位错观察值/m 位错计算值/m 备注 石岗大坝 TCU068-TCU103 6.05 8.00 3.33 上下 北丰桥 5.50 上下 欢乐公寓群 3.50 上下 第一公园大桥 TCU052-TCU054 7.12 4.00 3.29 上下 光复中学 TCU071-TCU075 11.21 2.50 1.74 上下 乌溪桥 2.00 2.61 水平 刘眉桥 TCU078-TCU122 25.40 0.20 0.18 上下 -
[1] 曹志磊,周琼,葛计划,孙军,隆爱军,龙剑锋,赵希磊. 2019. 郯庐断裂带安徽段及“霍山窗”断层活动特征与地震关联性研究[J]. 大地测量与地球动力学,39(7):681–685. [2] Cao Z L,Zhou Q,Ge J H,Sun J,Long A J,Long J F,Zhao X L. 2019. Fault activity and correlation study of Tan-Lu fault zone and “Huoshan Seismic Window"[J]. Journal of Geodesy and Geodynamics,39(7):681–685 (in Chinese). [3] 陈勇,陈鲲,俞言祥. 2007. 用集集主震记录研究近断层强震记录的基线校正方法[J]. 地震工程与工程振动,27(4):1–7. doi: 10.3969/j.issn.1000-1301.2007.04.001 [4] Chen Y,Chen K,Yu Y X. 2007. Base line correction method for near-fault accelerograms using Chi-Chi main shock record[J]. Journal of Earthquake Engineering and Engineering Vibration,27(4):1–7 (in Chinese). [5] 高波,王峥峥,袁松,申玉生. 2009. 汶川地震公路隧道震害启示[J]. 西南交通大学学报,44(3):336–341. [6] Gao B,Wang Z Z,Yuan S,Shen Y S. 2009. Lessons learnt from damage of highway tunnels in Wenchuan earthquake[J]. Journal of Southwest Jiaotong University,44(3):336–341 (in Chinese). [7] 胡进军. 2009. 近断层地震动方向性效应及超剪切破裂研究[D]. 哈尔滨: 中国地震局工程力学研究所: 126–133. [8] Hu J J. 2009. Directivity Effect of Near-Fault Ground Motion And Super-Shear Rupture[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 126–133(in Chinese). [9] 胡聿贤. 2006. 地震工程学[M]. 第二版. 北京: 地震出版社: 13–14. [10] Hu Y X. 2006. Earthquake Engineering[M]. Second Edition. Beijing: Seismological Press: 13–14(in Chinese). [11] 黄润秋,李为乐. 2009. 汶川大地震触发地质灾害的断层效应分析[J]. 工程地质学报,17(1):19–28. [12] Huang R Q,Li W L. 2009. Fault effect analysis of geo-hazard triggered by Wen chaun earthquake[J]. Journal of Engineering Geology,17(1):19–28 (in Chinese). [13] 李爽,周洪圆,刘向阳,贾俊峰. 2020. 基于中国规范的近断层区抗震设计谱研究[J]. 建筑结构学报,41(2):7–12. [14] Li S,Zhou H Y,Liu X Y,Jia J F. 2020. Study on near-fault seismic design spectra based on Chinese code for seismic design of buildings[J]. Journal of Building Structures,41(2):7–12 (in Chinese). [15] 王栋,谢礼立,胡进军. 2008. 倾斜断层不对称分布引起的几何效应:上下盘效应[J]. 地震学报,30(3):271–278. doi: 10.3321/j.issn:0253-3782.2008.03.006 [16] Wang D,Xie L L,Hu J J. 2008. Geometric effects resulting from the asymmetry of dipping fault:Hang wall/footwall effects[J]. Acta Seismologica Sinica,30(3):271–278 (in Chinese). [17] 王永安,李琼,刘强. 2011. 跨断层形变累积率的变化特征与云南地区强震[J]. 地震研究,34(2):136–142. [18] Wang Y A,Li Q,Liu Q. 2011. Variation of the cumulative rate of cross-fault deformation and strong earthquakes in Yunnan[J]. Journal of Seismological Research,34(2):136–142 (in Chinese). [19] 谢礼立,徐龙军,陶晓燕,杨绪剑. 2021. 跨断层土木工程研究与实验装置研发现状[J]. 工程力学,38(4):20–28. [20] Xie L L,Xu L J,Tao X Y,Yang X J. 2021. Research status of civil engineering structures across faults and the development of experimental devices for fault simulation[J]. Engineering Mechanics,38(4):20–28 (in Chinese). [21] 喻畑,李小军. 2012. 基于NGA模型的汶川地震区地震动衰减关系[J]. 岩土工程学报,34(03):552–558. [22] Yu T,Li X J. 2012. Attenuation relationship of ground motion for Wenchuan earthquake region based on NGA model[J]. Chinese Journal of Geotechnical Engineering,34(03):552–558 (in Chinese). [23] 张红艳,谢富仁. 2013. 天山地区跨断层形变观测与地壳应力特征[J]. 西北大学学报,43(04):617–622. [24] Zhang H Y,Xie F R. 2013. Cross-fault deformation observation and characteristics of crustal stress in Tianshan region[J]. Journal of Northwest University (Natural Science Edition),43(04):617–622 (in Chinese). [25] 周云好,陈章立,缪发军. 2004. 2001年11月14日昆仑山口西Ms8.1地震震源破裂过程研究[J]. 地震学报,26(增刊):9–20. [26] Zhou Y H,Chen Z L,Miao F J. 2004. Source process of the14 november 2001westhern kunlun mountain Ms8.1 earthquake[J]. Acta Seismological Sinica,26(added):9–20 (in Chinese). [27] Abrahamson N A. 2000. Near-fault ground motions from the 1999 Chi-Chi earthquake[C]// Proc. Of US-Japan Workshop on the Effects of Near-Field Earthquake Shaking. San Francisco, California: Pacific Earthquake Engineering Research Center: 11-13. [28] Bolt B A. 1999. Earthquakes[M]. 4th edition. New York: W. H. Freeman and Company: 52–53. [29] Boore D M. 2001. Effect of baseline corrections on displacement and response spectra for several recordings of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,91:1199–1211. [30] Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001 [31] Chao W A,Wu Y M,Zhao L. 2009. An automatic scheme for baseline correction of strong-motion records in coseismic deformation determination[J]. J Seismol,14(3):495–504. [32] Chu D B, Brandenberg S J, Lin P S. 2008. Performance of bridges in liquefied ground during 1999 Chi-Chi earthquake[C]// The 14th WCEE . Beijing China: CAEE and IAEE: 13–17. [33] Dong J J, Wang C D, Lee C T, Liao J J, Pan Y W. 2003. The influence of surface ruptures on building damage in the 1999 Chi-Chi earthquake: A case study in Fengyuan City[J]. Engineering Geology . 71: 157–179. [34] Iwan W D,Moser M A,Peng C Y. 1985. Some observations on strong motion earthquake measurement using a digital acceleration[J]. Bull Seismol Soc Am,75:1225–1246. doi: 10.1785/BSSA0750051225 [35] Kawashima K. 2002. Damage of bridges resulting from fault rupture in the 1999 Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake[J]. Structural Eng/Earthquake Eng, JSCE, 19: (2 Special Issue): 179-197. [36] Lee W H K, Shin T C, Kuo K W, Chen K C, Wu C F. 2001. CWB free-field strong-motion data from the 921 Chi-Chi earthquake: Processed acceleration files on CD-ROM. Central Weather Bureau, April 3, 2001: Seismological Observation Center: Strong-motion data series CD-001. [M/OL]. [2022-09-08]. https://pubs.geoscienceworld.org/ssa/bssa/article/91/5/1370/102942/CWB-Free-Field-Strong-Motion-Data-from-the-21. [37] Lin M L,Lin C H,Li C H,Liu C Y,Hung C H. 2021. 3D modeling of the ground deformation along the fault rupture and its impact on engineering structures:Insights from the 1999 Chi-Chi earthquake,Shigang District,Taiwan[J]. Engineering Geology,281:105993. doi: 10.1016/j.enggeo.2021.105993 [38] Ma K F,Mori J,Lee S J,Yu S B. 2001. Spatial and temporal distribution of slip for the 1999 Chi-Chi,Taiwan earthquake[J]. Bull Seismol Soc Am,91(5):1069–1087. [39] Mccomb H,Ruge A,Neumann F. 1943. The determination of true ground motion by integration of strong-motion records:A Symposium[J]. Bull Seismol Soc Am,33(1):1–63. doi: 10.1785/BSSA0330010001 [40] Ota Y,Watanabe M,Suzuki Y,Yanagida M,Miyawaki A,Sawa H. 2007. Style of the surface deformation by the 1999 Chichi earthquake at the central segment of Chelungpu fault,Taiwan,with special reference to the presence of the main and subsidiary faults and their progressive deformation in the Tsauton area[J]. J Asia Earth Sci,31:214–225. doi: 10.1016/j.jseaes.2006.07.030 [41] Somerville P G,Smith N F,Graves R W,Abrahamson N A. 1997. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity[J]. Seismol Res Lett,68(1):199–222. doi: 10.1785/gssrl.68.1.199 [42] Wang G Q,Zhou X Y,Zhang P Z,Igel H. 2002. Characteristics of amplitude and during for near fault strong ground motion from the 1999 Chi-Chi,Taiwan Earthquake[J]. Soil Dyn Earthq Eng,22(1):73–96. doi: 10.1016/S0267-7261(01)00047-1 [43] Wang R J,Schurr B,Milkereit C,Shao Z G,Jin M P. 2011. An improved automatic scheme for empirical baseline correction of digital strong-motion records[J]. Bull Seismol Soc Am,101(5):2029–2044. doi: 10.1785/0120110039 [44] Wang W L,Wang T T,Su J J,Lin C H,Huang T H. 2001. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake[J]. Tunn Undergr Space Technol,16(3):133–150. doi: 10.1016/S0886-7798(01)00047-5 [45] Wu Y M, Wu C F. 2007. Approximate recovery of coseismic deformation from Taiwan strong-motion records[J]. J Seismol. 11(2): 159–170. [46] Xu L J,Zhao G C,Gardoni P,Xie L L. 2018. Quantitatively determining the high-pass filter cutoff period of ground motions[J]. Bull Seismol Soc Am,108(2):857–865. doi: 10.1785/0120170074 [47] Yu Y X,Gao M T. 2004. Effects of the hanging wall and footwall on peak acceleration during the Jiji (Chi-Chi),Taiwan Province,earthquake[J]. Acta Seismological Sinica,14(6):654–659. [48] Zhao G C,Xu L J,Gardoni P,Xie L L. 2019. A new method of deriving the acceleration and displacement design spectra of pulse-like ground motions based on the wavelet multi-resolution analysis[J]. Soil Dyn Earthq Eng,119:1–10. doi: 10.1016/j.soildyn.2019.01.008 -