2023年沙雅MS6.1地震和2012年洛浦MS6.0地震矩张量反演及震源断层确定

许英才

许英才. 2023. 2023年沙雅MS6.1地震和2012年洛浦MS6.0地震矩张量反演及震源断层确定. 地震学报,45(5):763−780. DOI: 10.11939/jass.20230013
引用本文: 许英才. 2023. 2023年沙雅MS6.1地震和2012年洛浦MS6.0地震矩张量反演及震源断层确定. 地震学报,45(5):763−780. DOI: 10.11939/jass.20230013
Xu Y C. 2023. Moment tensor inversion and source fault determination of the 2023 MS6.1 Shaya earthquake and the 2012 MS6.0 Luopu earthquake. Acta Seismologica Sinica45(5):763−780. DOI: 10.11939/jass.20230013
Citation: Xu Y C. 2023. Moment tensor inversion and source fault determination of the 2023 MS6.1 Shaya earthquake and the 2012 MS6.0 Luopu earthquake. Acta Seismologica Sinica45(5):763−780. DOI: 10.11939/jass.20230013

2023年沙雅MS6.1地震和2012年洛浦MS6.0地震矩张量反演及震源断层确定

基金项目: 中国地震局震情跟踪定向工作任务(2022010104,2023010113)和宁夏自然科学基金项目(2022AAC03687)联合资助
详细信息
    通讯作者:

    许英才,硕士,高级工程师,主要从事地震活动性和数字地震学研究,e-mail:xuyingcai007@163.com

  • 中图分类号: P315.2

Moment tensor inversion and source fault determination of the 2023 MS6.1 Shaya earthquake and the 2012 MS6.0 Luopu earthquake

  • 摘要:

    2023年1月30日塔里木盆地北部新疆沙雅发生MS6.1地震,其附近曾发生过2012年3月9日洛浦MS6.0地震,两次地震均发生在巴楚隆起—阿瓦提凹陷构造带。通过gCAP方法测定了2023年沙雅MS6.1地震和2012年洛浦MS6.0地震的矩张量解,分析了沙雅地震和洛浦地震震源机制与区域应力场的关系,初步确定了其可能的震源断层。结果显示:矩张量反演得到的2023年沙雅MS6.1地震震源机制解节面Ⅰ参数为走向251°、倾角68°、滑动角6°,节面Ⅱ参数为走向159°、倾角84°、滑动角158°,震源机制为走滑型,P轴方位为207°,倾伏角为11°;2012年洛浦MS6.0地震震源机制解节面Ⅰ参数为走向274°、倾角61°、滑动角67°,节面Ⅱ参数为走向135°、倾角36°、滑动角125°,震源机制为逆冲型,P轴方位为20°,倾伏角为13°;两次地震的P轴方位与巴楚隆起—阿瓦提凹陷带NNE向主压应力方向一致;沙雅地震的地震矩M0为7.798×1017 N·m,矩张量解MrrMttMppMrtMrpMtp分别为−0.081,−0.821,0.342,0.064,−0.358,0.685;洛浦地震的地震矩M0为9.076×1017 N·m,矩张量解MrrMttMppMrtMrpMtp分别为0.517,−0.910,−0.353,−0.491,−0.180,0.341,且均属于典型天然构造地震事件。两次地震的震源机制与应力体系关系显示,其震源机制解节面的相对剪应力几乎达到了最大,且震源机制解滑动角与剪应力滑动角相差较小,表明两次地震几乎均发生在构造应力场的最优释放节面上,并主要以剪应力作用体现。结合已有研究,初步推测两次地震震源机制解的节面Ⅱ为可能的发震破裂面,2023年沙雅地震的发震构造可能为阿瓦提凹陷中地壳约30 km滑脱构造带上方NW走向的高倾角捩断层,地震错动方式为右旋走滑,该地震是由于塔里木克拉通北部整体向南天山深部俯冲导致NW向平移断条之间产生撕裂作用;2012年洛浦地震可能与巴楚隆起上盘相对于阿瓦提凹陷下盘NE方向逆冲运动产生的NW走向且断层面SW向倾的发震构造有关。

    Abstract:

    On January 30, 2023, a MS6.1 earthquake occurred in Xinjiang Shaya in the northern Tarim basin. The MS6.0 Luopu earthquake on March 9, 2012 was the latest strong earthquake near the Shaya epicenter. These two earthquakes both occurred in the Bachu uplift to Awati depression tectonic belt. The moment tensor solutions of 2023 MS6.1 Shaya earthquake and 2012 MS6.0 Luopu earthquake were determined by gCAP method. The relationship between focal mechanisms of Shaya and Luopu earthquakes and regional stress regime was analyzed. Finally, the source faults were preliminarily determined. Moment tensor inversion results indicate that the 2023 MS6.1 Shaya earthquake is a strike-slip event with strike 251°, dip 68°, rake 6° for nodal plane Ⅰ and 159°, 84°, 158° for nodal plane Ⅱ, respectively, the Paxis azimuth is 207° and plunge angle is 11°, and that of the 2012 MS6.0 Luopu earthquake is a thrust event with strike 274°, dip 61°, rake 67° for nodal plane Ⅰ and 135°, 36°, 125° for nodal plane Ⅱ, respectively, the P-axis azimuth is 20° and plunge angle is 13°. The P-axis azimuths are both consistant with the principal compressive stress direction in the NNE direction of the tectonic stress field in the Bachu uplift to Awati depression belt. The results of the full moment tensor solutions show that for Shaya earthquake the seismic moment M0 is 7.798×1017 N·m while the moment tensor solutions Mrr, Mtt, Mpp, Mrt, Mrp, Mtp are −0.081, −0.821, 0.342, 0.064, −0.358, 0.685, and for Luopu earthquake the seismic moment M0 is 9.076×1017 N·m while the moment tensor solutions Mrr, Mtt, Mpp, Mrt, Mrp, Mtp are 0.517, −0.910, −0.353, −0.491, −0.180, 0.341, and that both Shaya and Luopu earthquakes belong to typical natural tectonic seismic events. The relationship between the focal mechanisms and the stress regime of the two earthquakes reveals that the relative shear stress of the focal mechanism plane is almost the maximum, and the difference between the rake of the focal mechanism and that of the shear stress is small, indicating that the two earthquakes almost both occurred at the optimal release plane of the tectonic stress field, and are mainly affected by the shear stress. Combined with the previous studies, it is speculated that the nodal plane Ⅱ of the focal mechanism solution of the two earthquakes is the possible seismogenic rupture plane. The seismogenic structure of the 2023 Shaya earthquake may be a high-dip transition tear fault on the NW strike above the 30 km deep detachment tectonic belt of the middle crust of Awati depression, and the earthquake dislocation mode may be right-lateral strike-slip. It belongs to the tearing between NW trending translational fault blocks caused by deep subduction from the northern Tarim Craton to the southern Tianshan tectonic belt. The 2012 Luopu earthquake may be related to the NW striking and SW dipping seismogenic fault generated by the overthrust of the hanging wall of Bachu uplift which is in the NE direction above the footwall of Awati depression.

  • 图  8   巴楚隆起—阿瓦提凹陷带区域应力体系与沙雅、洛浦地震震源机制的关系

    Figure  8.   Relationships between the stress regime in the Bachu uplift-Awati depression zone and the focal mechanisms of the Shaya and Luopu earthquakes

    图  1   2023年沙雅MS6.1地震和2012年洛浦MS6.0地震震中、本文矩张量结果及其震中周缘M≥6.0地震分布

    F1:阿恰断裂;F2:吐木休克断裂;F3:巴东断裂;F4:喀拉玉尔滚断裂;F5:库车河断裂。断裂据周慧等(2021)、李涛和王宗秀(2006)描绘

    Figure  1.   Epicenters of the 2023 MS6.1 Shaya earthquake and the 2012 MS6.0 Luopu earthquake,this paper results and the distribution of M≥6.0 earthquakes

    F1:Aqia fault;F2:Tumuxiuke fault;F3:Badong fault;F4:Kalayuergun fault; F5:Kuchehe fault.These faults were sketched based on Zhou et al2021),Li and Wang (2006

    图  2   用于计算沙雅(a)和洛浦(b)地震震源机制解的台站分布(台站震中距为450 km内)

    Figure  2.   Distribution of the stations used for calculating the focal mechanism solutions of Shaya (a)and Luopu (b) earthquakes (Stations shown are within 450 km to the epicenter)

    图  3   2023年沙雅MS6.1地震(a)和2012年洛浦MS6.0地震(b)的矩张量解及其拟合残差随深度的变化

    Figure  3.   The moment tensor solutions of the 2023 MS6.1 Shaya earthquake (a) and 2012 MS6.0 Luopu earthquake (b) and the variations of fitting residual errors with focal depths

    图  4   2023年沙雅MS6.1地震最佳拟合深度处的矩张量解及其波形拟合情况

    波形左侧的字母为台站代码,字母下侧数字分别为震中距(km)和相对偏移时间(s),波形下方的两行数字分别为理论波形(红色)相对实际波形(黑色)的移动时间(s)及其相关系数,下同

    Figure  4.   Moment tensor solution and waveforms fitting at the best fitting depth of the 2023 MS6.1 Shaya earthquake

    Letters on the left side of the waveforms are station codes. Numbers under the letters are epicenter distance (in kilometer) and relative offset time (in second) ,and the numbers below the waveforms are the time shifts (in second) and cross-correlation coefficients of the theoretical waveforms (red) relative to the observed waveforms (black) respectively,the same below

    图  5   2012 年洛浦MS6.0地震最佳拟合深度处的矩张量解及其波形拟合情况

    Figure  5.   Moment tensor solution and waveforms fitting at the best fitting depth of the 2012 MS6.0 Luopu earthquake

    图  6   Bootstrap抽样方法评估的2023年MS6.1沙雅地震(a)和2012年洛浦MS6.0地震(b)震源机制误差

    Figure  6.   Focal mechanism errors of 2023 Shaya MS6.1 earthquake (a) and 2012 Luopu MS6.0 earthquake (b) evaluated by Bootstrap sampling method

    图  7   2023年沙雅MS6.1地震(a)和2012年洛浦MS6.0地震(b)不同来源的震源机制解

    震源机制解按中心解最小空间旋转角排序

    Figure  7.   Focal mechanism solutions from different sources of 2023 Shaya MS6.1 earthquake (a) and 2012 Luopu MS6.0 earthquake (b)

    Focal mechanism solutions are sorted by the minimum 3-D rotation angles from the central focal mechanism solution

    图  9   沙雅MS6.1地震(a)和洛浦MS6.0地震(b)震源机制解节面的相对剪应力、区域主压应力走向及P轴方位

    Figure  9.   The relative shear stress on nodal planes,the azimuth of regional principal compressive stress,and the azimuth of the P axis of focal mechanism solutions for the MS6.1 Shaya earthquake (a) and the MS6.0 Luopu earthquake (b)

    图  10   本文初步推测的洛浦MS6.0地震(a)和沙雅MS6.1地震(b)可能的发震断层及其运动方式

    Figure  10.   Possible seismogenic faults and their motion modes for the MS6.0 Luopu earthquake (a) and the MS6.1 Shaya earthquake (b)

    表  1   巴楚隆起—阿瓦提凹陷带区域一维速度模型

    Table  1   1-D velocity structure for the Bachu uplift-Awati depression zone

    层号 顶层深度/km vP/(km·s−1 vS/(km·s−1 层号 顶层深度/km vP/(km·s−1 vS/(km·s−1
    1 0 4.69 2.77 6 30 6.59 3.90
    2 5 5.38 3.19 7 40 6.97 4.13
    3 10 5.29 3.13 8 45 8.06 4.77
    4 15 5.43 3.21 9 50 8.19 4.84
    5 20 5.80 3.43
    下载: 导出CSV

    表  2   gCAP方法矩张量反演得到的2023年沙雅MS6.1和2012年洛浦MS6.0地震的震源机制解参数

    Table  2   Focal mechanism solutions of the 2023 MS6.1 Shaya earthquake and the 2012 MS6.0 Luopu earthquake from gCAP inversion method

    地震事件节面Ⅰ节面ⅡPTB震源机
    制类型
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°方位/°倾伏角/°方位/°倾伏角/°方位/°倾伏角/°
    2023年沙雅MS6.1 251 68 6 159 84 158 207 11 113 19 325 67 走滑型
    2012年洛浦MS6.0 274 61 67 135 36 125 20 13 142 66 286 20 逆冲型
    下载: 导出CSV

    表  3   沙雅MS6.1地震和洛浦MS6.0地震全矩张量解各成分的比例

    Table  3   The percentage of each component of full moment tensor solution for the MS6.1 Shaya earthquake and the MS6.0 Luopu earthquake

    地震事件ζχΛISOΛCLVDΛDC
    2023年沙雅MS6.1−0.230.035.29%0.09%94.62%
    2012年洛浦MS6.0−0.30−0.079.00%0.45%90.55%
    注:ζ 为ISO分量值,χ为CLVD分量值;ΛISOΛDCΛCLVD分别代表全矩张量解里ISO,DC及CLVD的比例。
    下载: 导出CSV

    表  4   应力张量在沙雅MS6.1地震和洛浦MS6.0地震震源机制解的两个节面上产生的相对剪应力和正应力

    Table  4   Relative shear stress and normal stress generated by the stress tensor on the two nodal planes of the focal mechanism solutions of the MS6.1 Shaya earthquake and the MS6.0 Luopu earthquake

    地震事件节面相对剪应力相对正应力剪应力的滑动角/°震源机制解的滑动角/°滑动角绝对值之差/°
    2023年
    沙雅MS6.1地震
    节面Ⅰ(ENE向)0.901−0.47532.26.026.2
    节面Ⅱ(NNW向)0.8900.256−177.4157.020.4
    2012年
    洛浦MS6.0地震
    节面Ⅰ(EW向)0.756−0.68276.167.09.1
    节面Ⅱ(NW向)0.787−0.030143.6125.018.6
    下载: 导出CSV
  • 曹厚臻,何丽娟,张林友. 2019. 塔里木克拉通形成以来的背景热史研究[J]. 地球物理学报,62(1):236–247.

    Cao H Z,He L J,Zhang L Y. 2019. Inversion of background thermal history since the formation of the Tarim Craton[J]. Chinese Journal of Geophysics,62(1):236–247 (in Chinese).

    陈运泰,刘瑞丰. 2021. 用P波初动资料确定地震震源机制教程(三)[J]. 地震地磁观测与研究,42(5):1–11.

    Chen Y T,Liu R F. 2021. The use of the first P motion data for earthquake focal mechanism determination of:A tutorial (3)[J]. Seismological and Geomagnetic Observation and Research,42(5):1–11 (in Chinese).

    防灾科技学院, Seismology小组. 2023. 2023年1月30日新疆阿克苏6.1级地震的震源机制中心解及对震中周围产生的变形场[EB/OL]. [2023-02-02]. https://mp.weixin.qq.com/s/UkfB7AuKlcymD5u9bzNQRQ.

    Institute of Disaster Prevention, Seismology Group. 2023. The central focal mechanism solution and deformation field around the epicenter of the M6.1 Aksu earthquake on January 30, 2023 in Xinjiang[EB/OL]. [2023-02-02]. https://mp.weixin.qq.com/s/UkfB7AuKlcymD5u9bzNQRQ (in Chinese).

    冯英,史勇军,徐衍刚,赖爱京,潘振生,蒋志英. 2012. 2012年3月9日新疆洛浦6.0级地震前前兆异常初步分析[J]. 内陆地震,26(4):316–323.

    Feng Y,Shi Y J,Xu Y G,Lai A J,Pan Z S,Jiang Z Y. 2012. Primary analysis of precursor anomalies before Luopu earthquake with MS6.0[J]. Inland Earthquake,26(4):316–323 (in Chinese).

    何文渊,李江海,钱祥麟,张臣. 2000. 塔里木盆地巴楚断隆中新生代的构造演化[J]. 北京大学学报(自然科学版),36(4):539–546.

    He W Y,Li J H,Qian X L,Zhang C. 2000. The Meso-Cenozoic evolution of Bachu fault-uplift in Tarim basin[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,36(4):539–546 (in Chinese).

    李圣强,陈棋福,赵里,朱露培,高金哲,李闽峰,刘桂平,王斌. 2013. 2011年5月中国东北MW5.7深震的非同寻常震源机制:区域波形反演与成因探讨[J]. 地球物理学报,56(9):2959–2970.

    Li S Q,Chen Q F,Zhao L,Zhu L P,Gao J Z,Li M F,Liu G P,Wang B. 2013. Anomalous focal mechanism of the May 2011 MW5.7 deep earthquake in northeastern China:Regional waveform inversion and possible mechanism[J]. Chinese Journal of Geophysics,56(9):2959–2970 (in Chinese).

    李涛,王宗秀. 2005. 塔里木盆地及邻区岩石圈拆离解耦与盆山格局关系的天然地震分析[J]. 地学前缘,12(3):125–136.

    Li T,Wang Z X. 2005. The lithospheric decoupling of the Tarim basin and surrounding orogenic belts and its relationship with basin-mountain patterns from the analysis of natural earthquake[J]. Earth Science Frontiers,12(3):125–136 (in Chinese).

    李涛,王宗秀. 2006. 塔里木地块北部横向构造及断条模式[J]. 中国地质,33(1):14–27.

    Li T,Wang Z X. 2006. Transverse structure and model of fault slivers in the northern part of the Tarim block[J]. Geology in China,33(1):14–27 (in Chinese).

    李艳永,唐明帅,乌尼尔. 2019. 新疆北天山中东段呼图壁地区震源深度的重新测定[J]. 震灾防御技术,14(2):352–362.

    Li Y Y,Tang M S,Wu N E. 2019. Redetermination of focal depth in Hutubi region of the middle and east of north Tianshan in Xinjiang[J]. Technology for Earthquake Disaster Prevention,14(2):352–362 (in Chinese).

    梁姗姗,邹立晔,刘艳琼. 2023. 2022年10月—2023年2月中国大陆地区M≥4.0地震震源机制解测定[J]. 地震科学进展,53(4):185–191.

    Liang S S,Zou L Y,Liu Y Q. 2023. Determination of focal mechanism solutions of the earthquakes with M≥4.0 occurred in the mainland of China during October 2022 to February 2023[J]. Progress in Earthquake Sciences,53(4):185–191 (in Chinese).

    刘志宏,林东成,王文革,张立国,高军义,任林伟,刘安英. 2001. 塔里木盆地吐木休克断裂带的研究[J]. 长春科技大学学报,31(3):219–223.

    Liu Z H,Lin D C,Wang W G,Zhang L G,Gao J Y,Ren L W,Liu A Y. 2001. Study on Tumuxiuke fault belt in Tarim basin[J]. Journal of Changchun University of Science and Technology,31(3):219–223 (in Chinese).

    罗艳,曾祥方,倪四道. 2013. 震源深度测定方法研究进展[J]. 地球物理学进展,28(5):2309–2321.

    Luo Y,Zeng X F,Ni S D. 2013. Progress on the determination of focal depth[J]. Progress in Geophysics,28(5):2309–2321 (in Chinese).

    孟庆强,朱东亚,解启来,金之钧. 2011. 塔中和巴楚地区深部流体活动控制因素及有利区预测[J]. 石油实验地质,33(6):597–601. doi: 10.3969/j.issn.1001-6112.2011.06.008

    Meng Q Q,Zhu D Y,Xie Q L,Jin Z J. 2011. Controlling factors for deep fluid activity and prediction of positive effect area in middle Tarim and Bachu regions[J]. Petroleum Geology and Experiment,33(6):597–601 (in Chinese).

    瞿辰,杨文采,于常青. 2013. 塔里木盆地地震波速扰动及泊松比成像[J]. 地学前缘,20(5):196–206.

    Qu C,Yang W C,Yu C Q. 2013a. Seismic velocity tomography and Poisson’s ratio imaging in Tarim basin[J]. Earth Science Frontiers,20(5):196–206 (in Chinese).

    邵学钟,张家茹. 1994. 塔里木盆地深部构造的地震转换波探测结果[J]. 地球物理学报,37(6):836.

    Shao X Z,Zhang J R. 1994. Preliminary results of study of deep structures in Tarim basin by the method of converted waves of earthquakes[J]. Acta Geophysica Sinica,37(6):836 (in Chinese).

    万永革. 2019. 同一地震多个震源机制中心解的确定[J]. 地球物理学报,62(12):4718–4728.

    Wan Y G. 2019. Determination of center of several focal mechanisms of the same earthquake[J]. Chinese Journal of Geophysics,62(12):4718–4728 (in Chinese).

    万永革. 2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报,63(6):2281–2296.

    Wan Y G. 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics,63(6):2281–2296 (in Chinese).

    王良书,李成,杨春. 1996. 塔里木盆地岩石层热结构特征[J]. 地球物理学报,39(6):794–803.

    Wang L S,Li C,Yang C. 1996. The lithospheric thermal structure beneath Tarim basin,western China[J]. Acta Geophysica Sinica,39(6):794–803 (in Chinese).

    韦生吉,倪四道,崇加军,郑勇,陈颙. 2009. 2003年8月16日赤峰地震:一个可能发生在下地壳的地震?[J]. 地球物理学报,52(1):111–119.

    Wei S J,Ni S D,Chong J J,Zheng Y,Chen Y. 2009. The 16 August 2003 Chifeng earthquake:Is it a lower crust earthquake?[J]. Chinese Journal of Geophysics,52(1):111–119 (in Chinese).

    许英才,曾宪伟. 2022. 2021年11月18日宁夏灵武MS4.0地震震源参数研究[J]. 地球与行星物理论评,53(2):214–227.

    Xu Y C,Zeng X W. 2022. Source parameters of the MS4.0 Lingwu earthquake on November 18th,2021[J]. Reviews of Geophysics and Planetary Physics,53(2):214–227 (in Chinese).

    易桂喜,赵敏,龙锋,梁明剑,王明明,周荣军,王思维. 2021. 2021年9月16日四川泸县MS6.0地震序列特征及孕震构造环境[J]. 地球物理学报,64(12):4449–4461. doi: 10.6038/cjg2021O0533

    Yi G X,Zhao M,Long F,Liang M J,Wang M M,Zhou R J,Wang S W. 2021. Characteristics of the seismic sequence and seismogenic environment of the MS6.0 Sichuan Luxian earthquake on September 16,2021[J]. Chinese Journal of Geophysics,64(12):4449–4461 (in Chinese).

    殷伟伟,张蕙. 2021. 利用震源机制判别山西地区地震事件类型[J]. 大地测量与地球动力学,41(8):846–852.

    Yin W W,Zhang H. 2021. Using focal mechanism to distinguish types of earthquake events in Shanxi[J]. Journal of Geodesy and Geodynamics,41(8):846–852 (in Chinese).

    张广伟,雷建设. 2015. 2015尼泊尔MS8.1地震中等余震震源机制研究[J]. 地球物理学报,58(11):4298–4304. doi: 10.6038/cjg20151134

    Zhang G W,Lei J S. 2015. Focal mechanism solutions of moderate-sized aftershocks of the 2015 MS8.1 Nepal earthquake[J]. Chinese Journal of Geophysics,58(11):4298–4304 (in Chinese).

    中国地震局地球物理研究所. 2023. 2023年1月30日新疆阿克苏沙雅县6.1级地震科技支撑简报[EB/OL]. [2023−01−30].https://www.cea-igp.ac.cn/kydt/279809.html.

    Institute of Geophysics, China Earthquake Administration. 2023. Science and technology support for the M6.1 earthquake in Shaya County, Aksu region in Xinjiang on January 30, 2023[EB/OL]. [2023−01−30]. https://www.cea-igp.ac.cn/kydt/279809.html (in Chinese).

    中国地震台网中心. 2023. 中国地震台网地震目录[DB/OL]. [2023−01−30]. https://news.ceic.ac.cn/.

    China Earthquake Networks Center. 2023. Earthquake catalog of CENC[DB/OL]. [2023−01−30]. https://news.ceic.ac.cn/ (in Chinese ).

    周慧,陈永权,李洪辉,李保华,黄理力,刘亚雷,龚洪林,文磊. 2021. 塔里木盆地巴楚隆起北缘的吐木休克断裂与巴东断裂[J]. 地质科学,56(1):1–18. doi: 10.12017/dzkx.2021.001

    Zhou H,Chen Y Q,Li H H,Li B H,Huang L L,Liu Y L,Gong H L,Wen L. 2021. The Tumuxiuke and Badong faults on the northern boundary of the Bachu rise,Tarim basin[J]. Chinese Journal of Geology,56(1):1–18 (in Chinese).

    周铭. 2014. 塔里木及其邻域三维S波速度结构及径向各向异性研究[D]. 北京: 中国地质大学(北京): 52–55.

    Zhou M. 2014. Three-Dimensional S Wave Velocity Structure and Radial Anisotropy of the Tarim Basin and Its Surrounding Regions[D]. Beijing: China University of Geosciences (Beijing): 52–55 (in Chinese).

    朱治国,李桂荣. 2013. 应用GPS连续观测和流动重力资料分析新疆洛浦MS6.0地震的前兆特征[J]. 内陆地震,27(3):222–228. doi: 10.3969/j.issn.1001-8956.2013.03.004

    Zhu Z G,Li G R. 2013. Study on precursory features of Luopu MS6.0 earthquake based on GPS continuous observation data and mobile gravity data[J]. Inland Earthquake,27(3):222–228 (in Chinese).

    Efron B,Tibshirani R. 1986. Bootstrap methods for standard errors,confidence intervals,and other measures of statistical accuracy[J]. Statist Sci,1(1):54–75.

    European-Mediterranean Seismological Centre. 2023. Moment tensors[DB/OL]. [2022-02-01]. https://www.emsc-csem.org/Earthquake/tensors.php.

    Mori J. 1991. Estimates of velocity structure and source depth using multiple P waves from aftershocks of the 1987 Elmore Ranch and Superstition Hills,California,earthquakes[J]. Bull Seismol Soc Am,81(2):508–523. doi: 10.1785/BSSA0810020508

    Song Z H,Tang L J,Liu C. 2021. Variations of thick-skinned deformation along Tumuxiuke thrust in Bachu uplift of Tarim basin,northwestern China[J]. J Struct Geol,144:104277. doi: 10.1016/j.jsg.2021.104277

    Stein S,Wiens D A. 1986. Depth determination for shallow teleseismic earthquakes:Methods and results[J]. Rev Geophys,24(4):806–832. doi: 10.1029/RG024i004p00806

    USGS. 2023. M5.7: 110 km ESE of Aral, China[EB/OL]. [2022-02-01]. https://earthquake.usgs.gov/earthquakes/eventpage/us6000jk82/executive.

    Wan Y G. 2010. Contemporary tectonic stress field in China[J]. Earthquake Science,23(4):377–386. doi: 10.1007/s11589-010-0735-5

    Xin H L,Zhang H J,Kang M,He R Z,Gao L,Gao J. 2019. High-resolution lithospheric velocity structure of continental China by double-difference seismic travel-time tomography[J]. Seismol Res Lett,90(1):229–241. doi: 10.1785/0220180209

    Zhao J M,Cheng H G,Pei S P,Liu H B,Zhang J S,Liu B F. 2008. Deep structure at northern margin of Tarim basin[J]. China Science Bulletin,53(10):1544–1554.

    Zhu L P,Helmberger D V. 1996a. Advancement in source estimation techniques using broadband regional seismograms[J]. Bull Seismol Soc Am,86(5):1634–1641. doi: 10.1785/BSSA0860051634

    Zhu L P,Helmberger D V. 1996b. Intermediate depth earthquakes beneath the India-Tibet collision zone[J]. Geophys Res Lett,23(5):435–438. doi: 10.1029/96GL00385

    Zhu L P,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x

    Zhu L P,Ben-Zion Y. 2013. Parametrization of general seismic potency and moment tensors for source inversion of seismic waveform data[J]. Geophys J Int,194(2):839–843. doi: 10.1093/gji/ggt137

图(10)  /  表(4)
计量
  • 文章访问数:  231
  • HTML全文浏览量:  125
  • PDF下载量:  107
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-16
  • 修回日期:  2023-05-11
  • 网络出版日期:  2023-09-09
  • 刊出日期:  2023-10-29

目录

    /

    返回文章
    返回