基于机器学习的区域地震动模拟以2022年泸定MS6.8地震为例

陈凯, 潘华

陈凯,潘华. 2025. 基于机器学习的区域地震动模拟—以2022年泸定MS6.8地震为例. 地震学报,47(2):242−253. DOI: 10.11939/jass.20230084
引用本文: 陈凯,潘华. 2025. 基于机器学习的区域地震动模拟—以2022年泸定MS6.8地震为例. 地震学报,47(2):242−253. DOI: 10.11939/jass.20230084
Chen K,Pan H. 2025. Machine learning-based regional ground seismic motion simulation:A case study of the MS6.8 Luding earthquake in 2022. Acta Seismologica Sinica47(2):242−253. DOI: 10.11939/jass.20230084
Citation: Chen K,Pan H. 2025. Machine learning-based regional ground seismic motion simulation:A case study of the MS6.8 Luding earthquake in 2022. Acta Seismologica Sinica47(2):242−253. DOI: 10.11939/jass.20230084

基于机器学习的区域地震动模拟—以2022年泸定MS6.8地震为例

基金项目: 国家重点研发计划课题项目(2022YFC3003502)资助
详细信息
    作者简介:

    陈凯,在读博士研究生,高级工程师,主要从事地震动模拟与地震监测等研究,e-mail:124753884@qq.com

    通讯作者:

    潘华,博士,研究员,主要从事地震区划、概率地震危险性分析、地震活动性等方面的研究,e-mail:panhua.mail@163.com

  • 中图分类号: P315.9

Machine learning-based regional ground seismic motion simulation:A case study of the MS6.8 Luding earthquake in 2022

  • 摘要:

    利用机器学习中的主成分分析法(PCA)提取了2022年泸定MS6.8地震的M5.0余震(2022年10月22日)的特征主成分时程,对泸定MS6.8主震的地震动时程进行模拟。在此过程中,将主震目标台站的地震动峰值加速度和反应谱作为约束条件,利用粒子群优化(PSO)算法计算特征主成分时程的组合系数。结果显示模拟结果与真实记录较为一致。这表明:利用机器学习算法能够通过提取余震的特征主成分时程对目标地震进行模拟;在进行小区域地震动模拟时,通过选取具有一致地形效应的地震动数据可以避免特殊地形效应所导致的该主成分缺失。

    Abstract:

    The seismic time history plays a crucial role in pre-earthquake risk assessment and post-earthquake damage evaluation. However, due to the uncertainty in simulated ground seismic motion parameters, there are notable differences between simulation results and actual records. Fortunately, advancements in data mining techniques and the availability of high-quality strong ground seismic motion observation records have made it possible to simulate earthquakes by extracting seismic characteristic records.

    On September 5, 2022, an MS6.8 earthquake struck Luding County, Garze Tibetan Autonomous Prefecture, Sichuan Province, China, with epicenter location (29.59°N, 102.08°E), and a focal depth of 16 km. This event occurred in the southeastern segment of the Xianshuihe fault zone, near the Moxi fault and Jinpingshan fault. According to the intensity survey results released by the China Earthquake Administration, the major axis of the isoseismal lines of the Luding earthquake trended northwest, with dimensions of 195 km by 112 km, and the intensity in the most affected area reached level Ⅸ. The area with intensity Ⅵ or above covered 19 089 square kilometers. The earthquake caused significant damage to infrastructure, including roads, bridges, buildings, and lifeline projects, resulting in casualties and triggering secondary hazards such as landslides. Following the Luding MS6.8 main shock, several aftershocks occurred, the most notable of which was the MS5.0 event on October 22, 2022.

    This study selected seismic records from the MS5.0 earthquake on October 22, 2022. According to the Global Centroid Moment Tensor (GCMT) results, the focal mechanism of the MS6.8 main shock indicates a strike of 164°, dip of 78°, and slip of 7°, and the MS5.0 aftershock focal mechanism shows a strike of 167°, dip of 48°, and slip of −53°. The main shock is characterized as a strike-slip earthquake, while the aftershock involves both thrust and strike-slip components. Fifteen stations with three-component records from the aftershocks were selected for feature principal component time history extraction, and then baseline correction, and filtering were applied to the seismic records. Due to the complex influence of rupture mechanisms, propagation paths, and site conditions, seismic records at different stations capture different seismic features. This study employs principal component analysis (PCA), a machine learning-based data dimensionality reduction method, to extract seismic features. The PCA process involves treating each seismic record as a row vector, concatenating all seismic records to form a matrix, and applying linear transformations to map the high-dimensional vectors into a lower-dimensional space. The resulting matrix, composed of 45 seismic records from 15 stations, contains the primary features of the Luding earthquake. The number of feature principal component time histories is determined by selecting those with cumulative contribution rates exceeding 95%.

    The simulation of ground motions for the main shock at target stations requires the calculation of coefficients for the 15 feature principal component time histories obtained through PCA. Particle swarm optimization (PSO) is employed to find the combination coefficients that minimize the error between the simulated ground motions and the actual records, with peak acceleration and acceleration response spectrum as constraints. This algorithm is an optimization computing technique that takes into account both the individual cognition of particles and the social influence of the population. Twelve target stations near the epicenter of the Luding main shock were selected for simulation, and PSO was used to calculate the combination coefficients for the feature principal component time histories. The simulated ground motions were then compared with the actual records.

    The simulation results for most stations are satisfactory, with small errors between simulated and actual values in both high-frequency and low-frequency ranges. However, there is some discrepancy in the simulation results for the EW-direction seismic records between stations 51MNT and 51HYQ. To better assess the contribution of data from the stations 51HYQ and 51MNT to the feature principal component time histories, principal component analysis was conducted after removing data from these two stations. It was found that the number of feature principal component time histories with a cumulative contribution rate of 95% decreased from 15 to 12. The simulation results of seismic time history and response spectra remained consistent with the results before removal, indicating that the contribution of data from these two stations to the ground seismic motion simulation in this study is relatively small. To improve the simulation for these distant stations, the study replaced the four feature principal component time histories with lower contribution rates, leading to better results. The comparison of actual and simulated ground seismic motions, as well as acceleration response spectra, demonstrates the effectiveness of the proposed approach.

    This study leverages machine learning techniques, specifically principal component analysis and particle swarm optimization, to simulate ground motions for the Luding earthquake sequence. The analysis demonstrates that it is feasible to extract seismic feature principal component time histories from aftershock data and to use them for main shock simulation. The combination of PSO optimization, peak acceleration, and acceleration response spectrum as constraints yields accurate simulations. The study suggests that utilizing data-driven approaches, especially in the regions with frequent seismic activity, provides valuable insights into the potential impact of strong earthquakes.

  • 图  7   目标台站实际反应谱(红色)与模拟反应谱(蓝色)的对比

    Figure  7.   Comparison of the actual response spectra (in red) with the simulated ones (in blue) for the target stations

    图  1   2022年泸定MS6.8地震及其MS5.0余震的震中位置和台站分布

    Figure  1.   Locations of MS6.8 Luding earthquake in 2022 and its aftershock with MS5.0 and distribution of seismic stations

    图  2   2022年泸定MS6.8地震的MS5.0余震的地震动衰减关系

    Figure  2.   Ground motion attenuation relationship of the MS5.0 aftershock of the 2022 Luding MS6.8 earthquake

    图  3   本文所用主成分分析法(PCA)的地震动模拟流程

    Figure  3.   Ground motion simulation flow of principal component analysis (PCA) used in this study

    图  4   基于主成分分析法进行特征提取而得到的2022年泸定MS5.0余震的特征主成分时程

    Figure  4.   Feature principal component time histories of the MS5.0 Luding aftershock based on feature extraction by the principal component analysis algorithm

    图  5   泸定MS5.0余震的特征波贡献率

    Figure  5.   Contribution rate of feature principal component time histories of the MS5.0 Luding aftershock

    图  6   目标台站实际地震动时程(红色)与模拟时程(蓝色)的对比

    Figure  6.   Comparison of the actual ground seismic motion time histories (in red) with the simulated ones (in blue) for the target stations

    图  8   各台站特征主成分时程组合系数ki

    Figure  8.   Combination coefficients ki of feature principal component time histories at each station

    图  9   各台站模拟峰值加速度及其误差

    Figure  9.   Simulated PGAs and their errors at each station

    表  1   2022年泸定MS6.8地震的MS5.0余震的地震动信息

    Table  1   Ground seismic motion information of the MS5.0 aftershock of the 2022 Luding MS6.8 earthquake

    台站 场地类型 台站位置 震中距/km PGA/(cm·s−2
    东经/° 北纬/° EW NS UD
    51HYJ 土层 102.6 29.5 56.5 5.5 6.3 −4.5
    51HYQ 土层 102.6 29.6 55.1 −6.8 9.2 5.2
    51JLT 土层 101.5 29.0 85.1 17.4 −17.4 −17.4
    51LDJ 土层 102.2 29.7 19.2 −50.6 −59.9 34.4
    51LDL 土层 102.2 29.8 26.8 52.6 51.0 28.7
    51LDS 土层 102.2 29.9 36.2 −9.9 11.2 9.1
    51MND 土层 102.2 28.8 91.6 −3.6 1.2 3.0
    51SMC 土层 102.3 29.1 62.5 −6.0 2.9 7.1
    51SMX 土层 102.3 29.3 43.3 −9.5 −6.0 10.6
    51SWH 土层 103.6 29.3 155.9 −2.9 2.8 1.4
    51MNA 土层 102.2 28.6 113.5 2.4 −2.9 1.7
    51MNT 土层 102.2 28.5 124.5 −10.1 −10.0 −3.2
    51EMS 土层 103.4 29.6 132.5 −2.8 2.3 1.6
    51PJW 土层 103.7 30.3 178.2 −3.7 −4.4 −0.7
    51MCL 土层 103.7 28.9 180.2 −2.7 3.3 1.2
    下载: 导出CSV
  • 党鹏飞,刘启方,马完君,王冲. 2022. 参数对地震动随机模拟结果的影响分析[J]. 防灾减灾工程学报,42(4):768–777.

    Dang P F,Liu Q F,Ma W J,Wang C. 2022. Effects analysis of parameters on stochastically simulated ground motions[J]. Journal of Disaster Prevention and Mitigation Engineering,42(4):768–777 (in Chinese).

    傅磊,李小军,荣棉水,陈苏,周越. 2018. 基于强震动数据的龙门山地区地震动预测模型参数反演[J]. 地震学报,40(3):374–386. doi: 10.11939/jass.20170215

    Fu L,Li X J,Rong M S,Chen S,Zhou Y. 2018. Parameter estimation of ground-motion prediction model in Longmenshan region based on strong motion data[J]. Acta Seismologica Sinica,40(3):374–386 (in Chinese).

    高阳,潘华,汪素云. 2014. 随机有限断层法模拟中强地震近场强震动的参数影响研究[J]. 地震学报,36(4):698–710. doi: 10.3969/j.issn.0253-3782.2014.04.015

    Gao Y,Pan H,Wang S Y. 2014. Effect of parameters on near-fault ground-motion simulations for moderate-strong earthquakes by stochastic finite-fault method[J]. Acta Seismologica Sinica,36(4):698–710 (in Chinese).

    胡进军,张辉,靳超越,王中伟,胡磊. 2021. 基于PCA及PSO智能算法的地震动合成方法:以中国西部中强地震为例[J]. 工程力学,38(3):159–168. doi: 10.6052/j.issn.1000-4750.2020.05.0293

    Hu J J,Zhang H,Jin C Y,Wang Z W,Hu L. 2021. A method to simulate ground motion based on PCA and PSO intelligent algorithms:A case study of moderate magnitude earthquakes in western China[J]. Engineering Mechanics,38(3):159–168 (in Chinese).

    姜云木,阮鑫鑫,刘章军,岳庆霞. 2023. 基于工程特性的主余震型地震动降维模拟[J]. 地震工程学报,45(3):735–741.

    Jiang Y M,Ruan X X,Liu Z J,Yue Q X. 2023. Dimension reduction simulation of main-aftershock-type ground motions based on engineering characteristics[J]. China Earthquake Engineering Journal,45(3):735–741 (in Chinese).

    靳超越,胡进军,胡磊,王中伟. 2021. 基于机器学习的地震动特征提取与模拟:以2021年云南漾濞6.4级地震为例[J]. 世界地震工程,37(4):73–80. doi: 10.3969/j.issn.1007-6069.2021.04.009

    Jin C Y,Hu J J,Hu L,Wang Z W. 2021. Machine learning-based seismic feature extraction and simulation:A case study of the 2021 Yangbi M6.4 earthquake[J]. World Earthquake Engineering,37(4):73–80 (in Chinese).

    李启成. 2010. 经验格林函数方法模拟地震动研究[D]. 哈尔滨:中国地震局工程力学研究所:52−59.

    Li Q C. 2010. Research on Ground Motion Simulation With Empirical Greens Function Method[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration:52−59 (in Chinese).

    李瑛,杨丽娟,张春娥. 2016. 利用LLE和PCA方法提高地震数据信噪比[J]. 控制工程,23(11):1779–1783.

    Li Y,Yang L J,Zhang C E. 2016. Improvement of signal to noise ratio of seismic images using LLE and PCA methods[J]. Control Engineering of China,23(11):1779–1783 (in Chinese).

    石玉成,陈厚群,李敏,卢育霞. 2005. 随机有限断层法合成地震动的研究与应用[J]. 地震工程与工程振动,25(4):18–23. doi: 10.3969/j.issn.1000-1301.2005.04.003

    Shi Y C,Chen H Q,Li M,Lu Y X. 2005. The study and application of stochastic finite faults method in ground motion synthesizing[J]. Earthquake Engineering and Engineering Vibration,25(4):18–23 (in Chinese).

    孙晓丹,陶夏新. 2012. 宽频带地震动混合模拟方法综述[J]. 地震学报,34(4):571–577. doi: 10.3969/j.issn.0253-3782.2012.04.013

    Sun X D,Tao X X. 2012. Hybrid simulation of broadband ground motion:Overview[J]. Acta Seismologica Sinica,34(4):571–577 (in Chinese).

    杨陈,郭凯,张素灵,黄志斌. 2015. 中国地震台网现状及其预警能力分析[J]. 地震学报,37(3):508–515. doi: 10.11939/j.issn:0253-3782.2015.03.013

    Yang C,Guo K,Zhang S L,Huang Z B. 2015. Status quo of China earthquake networks and analyses on its early warning capacity[J]. Acta Seismologica Sinica,37(3):508–515 (in Chinese).

    俞言祥,李山有,肖亮. 2013. 为新区划图编制所建立的地震动衰减关系[J]. 震灾防御技术,8(1):24–33. doi: 10.3969/j.issn.1673-5722.2013.01.003

    Yu Y X,Li S Y,Xiao L. 2013. Development of ground motion attenuation relations for the new seismic hazard map of China[J]. Technology for Earthquake Disaster Prevention,8(1):24–33 (in Chinese).

    钟德理,冯启民. 2004. 基于地震动参数的建筑物震害研究[J]. 地震工程与工程振动,24(5):46–51. doi: 10.3969/j.issn.1000-1301.2004.05.009

    Zhong D L,Feng Q M. 2004. Investigation on building destruction based on seismic coefficient[J]. Earthquake Engineering and Engineering Vibration,24(5):46–51 (in Chinese).

    中华人民共和国应急管理部. 2022. 应急管理部发布四川泸定6.8级地震烈度图[EB/OL]. [2022-09-11]. http://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml.

    Ministry of Emergency Management of the People’s Republic of China. 2022. Ministry of Emergency Management issued the intensity map of MS6.8 Luding earthquake[EB/OL]. [2022-09-11]. http://www.mem.gov.cn/xw/yjglbgzdt/202209/t20220911_422190.shtml (in Chinese).

    Alimoradi A,Beck J L. 2015. Machine-learning methods for earthquake ground motion analysis and simulation[J]. J Eng Mech,141(4):04014147. doi: 10.1061/(ASCE)EM.1943-7889.0000869

    Beresnev I A,Atkinson G M. 1997. Modeling finite-fault radiation from the ω n spectrum[J]. Bull Seismol Soc Am,87(1):67–84. doi: 10.1785/BSSA0870010067

    GCMT. 2022. Global Centroid-Moment-Tensor Project[EB/OL]. [2023-06-15]. https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2022&mo=9&day=5&otype=ymd&oyr=2022&omo=9&oday=5&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=6&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000&lts=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0.

    Irikura K,Kamae K. 1994. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique[J]. Ann Geophys,37(6):1721–1743.

    Kennedy J,Eberhart R C. 1995. Particle swarm optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Perth,Australia:IEEE:1942−1948.

    Komatitsch D,Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. Bull Seismol Soc Am,88(2):368–392. doi: 10.1785/BSSA0880020368

    Kong Q K,Trugman D T,Ross Z E,Bianco M J,Meade B J,Gerstoft P. 2019. Machine learning in seismology:Turning data into insights[J]. Seismol Res Lett,90(1):3–14. doi: 10.1785/0220180259

  • 期刊类型引用(0)

    其他类型引用(2)

图(9)  /  表(1)
计量
  • 文章访问数:  569
  • HTML全文浏览量:  51
  • PDF下载量:  267
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-07-24
  • 修回日期:  2023-11-29
  • 网络出版日期:  2023-11-30
  • 刊出日期:  2025-03-27

目录

    /

    返回文章
    返回