The correlation between three components of ground motion at the same point based on the variance principal axis method
-
摘要:
基于国内外11次中、强地震的近场和远场强震动记录,采用方差主轴方法对地震动三个平动分量的相关性进行了研究。将地震动划分为上升段、强震段和下降段,进行最小主轴的时变特性分析,结果显示,强震段和下降段的最小方差主轴几乎沿竖向,而上升段的主轴变化规律比较复杂,不能简单认为该时段的主轴同样也位于竖向。按照断层距和场地条件进行参数统计分析,结果表明:最大方差主轴在水平面上近似服从均匀分布。对汶川MW7.9、集集MW7.6和花莲MW6.4三次典型地震事件的方差主轴进行了精细化分析,结果显示:在近断层区域,一小部分观测位置的方差主轴存在近似时不变特性,最大方差主轴指向可能与震源机制密切相关。
Abstract:Based on near-field and far-field strong motion records from 11 moderate-to-large earthquakes, the study investigates the correlation of the three translational components of seismic ground motion using the variance principal axis method. And then the correlation is examined at different scales, with the characteristics of the correlation described at both the sample level and the statistical level.
By considering the time-varying characteristics of the principal axes, the ground motion records are divided into three segments: the ascending phase, the strong ground motion phase, and the descending phase. The study investigates the direction of the minor variance principal axis in these three phases. Both at the sample level and statistical level, it is found that the minor variance principal axis during the strong ground motion and descending phases is nearly vertical. However, the principal axis in the ascending phase exhibits a more complex variation and cannot simply be assumed to be vertical. Since the earthquake intensity during the ascending phase is typically lower or the duration is shorter, it can be approximated as vertical in engineering practice by ignoring the ascending phase.
Statistical analysis of parameters based on fault distance and site conditions indicates that the major variance principal axis in the horizontal plane follows an approximately uniform distribution. The direction of the major variance principal axis exhibits significant time-dependent variability and strong randomness in the horizontal plane, far exceeding its variability in the vertical direction. Statistically, the occurrence probability of the major variance principal axis in any direction is approximately equal, following a uniform distribution.
Detailed analysis of the 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2018 Hualien earthquake indicates that in the near-fault region, a small subset of observation points exhibits approximately time-invariant characteristics for the variance principal axes, while many other stations show strong randomness in the direction of the variance principal axes. For the stations with nearly time-invariant principal axes, the orientation may be closely related to the source mechanism. In the vicinity of reverse faults, the major variance principal axis is oriented perpendicular to the fault strike, while in the vicinity of strike-slip faults, it is parallel to the fault strike. In near-fault regions with complex source mechanisms, there exist both components parallel and perpendicular to the fault strike.
-
-
图 2 典型强震记录的主轴时程图
(a) 2008年汶川地震中的51AXT台站记录; (b) 1999年集集地震中的CHY099台站记录;(c) SMART- Ⅰ (40)事件中的C00台站记录;(d) 1996年北岭地震中的ACI台站记录(图中阴影区域代表强震段)
Figure 2. The time histories of principal axes of the typical strong ground motion recordings
(a) The recordings at the station 51AXT in 2008 Wenchuan earthquake;(b) The recordings at the station CHY099 in 1999 Chi-Chi earthquake;(c) The recordings at the station C00 in SMART- Ⅰ (40) event;(d) The recordings at the station ACI in 1996 Northridge earthquake (shaded area represents strong seismic segment)
表 1 地震事件的基本信息
Table 1 Basic information about earthquake events
地震事件 发震年份 MW 发震断层类型 记录组数 汶川地震 2 008 7.90 逆断层 66 阿拉斯加地震 2 002 7.90 走滑断层 11 集集地震 1 999 7.62 逆断层−斜滑 274 SMART-I (45) 1 986 7.30 逆断层 36 兰德斯地震 1 992 7.28 走滑断层 76 El Mayor-Cucapah
地震2 010 7.20 走滑断层 166 北海道地震 2 018 6.70 逆断层 67 北岭地震 1 994 6.69 逆断层 98 花莲地震 2 018 6.40 走滑断层 30 美浓地震 2 016 6.40 走滑断层 14 SMART-I (40) 1 986 6.32 逆断层 36 表 2 文献中移动窗格技术的参数选择
Table 2 Parameter selection for moving window technique in literatures
表 3 窗格宽度和移动步长对汶川地震中51HYQ台站强震记录的最大方差主轴水平投影与正北夹角的影响
Table 3 The influence of window width and moving step on the angle between the horizontal projection of major variance principal axis and north of strong motion records at the station 51HYQ during Wenchuan earthquake
窗格宽度/s 移动步长/s 0.1 0.3 0.5 1 2 3 4 5 0.1 0.3 0.5 1 2 3 4 5 注:各子图纵坐标为夹角,范围为−90°—90°;横坐标为时间,范围为0—99.3 s。 表 4 窗格宽度和移动步长对SMART- Ⅰ (45)事件中C00台站强震记录的最大方差主轴水平投影与正北夹角的影响
Table 4 The influence of window width and moving step on the angle between the horizontal projection of major variance principal axis and north of strong motion records at the station C00 during SMART- Ⅰ (45) earthquake
窗格宽度/s 移动步长/s 0.1 0.3 0.5 1 2 3 4 5 0.1 0.3 0.5 1 2 3 4 5 注:各子图纵坐标为夹角,范围为−90°—90°;横坐标为时间,范围为0—55 s。 表 5 窗格宽度和移动步长对花莲地震中HWA048台站强震记录的最大方差主轴水平投影与正北夹角的影响
Table 5 The influence of window width and moving step on the angle between the horizontal projection of majorvariance principal axis and north of strong motion records at the station HWA048 during Hualien earthquake
窗格宽度/s 移动步长/s 0.1 0.3 0.5 1 2 3 4 5 0.1 0.3 0.5 1 2 3 4 5 注:各子图纵坐标为夹角,范围为−90°—90°;横坐标范围为时间,范围为0—16.2 s。 表 6 本文选取的各地震事件所使用的移动窗格技术参数
Table 6 The MWT parameters used for each seismic event selected in this study
地震事件 窗格宽度/s 移动步长/s 地震事件 窗格宽度/s 移动步长/s 汶川地震 4.0 0.1 北海道地震 3.0 0.1 阿拉斯加地震 4.0 0.1 北岭地震 2.0 0.1 集集地震 4.0 0.1 花莲地震 2.0 0.1 SMART- Ⅰ(45) 3.0 0.1 美浓地震 2.0 0.1 兰德斯地震 4.0 0.1 SMART- Ⅰ(40) 2.0 0.1 El Mayor-Cucapah地震 3.0 0.1 -
胡聿贤. 2006. 地震工程学[M]. 北京:地震出版社:100−102. Hu Y X. 2006. Earthquake Engineering[M]. Beijing:Seismological Press:100−102 (in Chinese).
李全旺,樊健生,聂建国. 2010. 地震动方向随机性对结构动力反应的影响[J]. 工程力学,27(12):135–140. Li Q W,Fan J S,Nie J G. 2010. Effect of directional uncertainty of earthquake ground motion on structural responses[J]. Engineering Mechanics,27(12):135–140 (in Chinese).
吕红山,赵凤新. 2007. 适用于中国场地分类的地震动反应谱放大系数[J]. 地震学报,29(1):67–76. doi: 10.3321/j.issn:0253-3782.2007.01.008 Lü H S,Zhao F X. 2007. Site coefficients suitable to China site category[J]. Acta Seismologica Sinica,29(1):67–76 (in Chinese).
全伟. 2008. 大跨桥梁多维多点地震反应分析研究[D]. 大连:大连理工大学:3−4. Quan W. 2008. Studies on Seismic Analysis of Large-Span Bridges Subjected to Multi-Component and Multi-Support Earthquake Excitations[D]. Dalian:Dalian University of Technology:3−4 (in Chinese).
全伟,李宏男. 2008. 曲线桥多维地震时程分析主方向研究[J]. 振动与冲击,27(8):20–24. doi: 10.3969/j.issn.1000-3835.2008.08.005 Quan W,Li H N. 2008. Research on critical angle of curved bridge in multi-dimensional earthquake time history analysis[J]. Journal of Vibration and Shock,27(8):20–24 (in Chinese).
柔洁,宋和平. 1990. 新疆乌恰7.4级地震余震加速度记录主轴方向的研究[J]. 中国地震,6(1):81–88. Rou J,Song H P. 1990. A study on principal axis of strong aftershock acceleration record of the Waqia earthquake of MS7.4[J]. Earthquake Research in China,6(1):81–88 (in Chinese).
王君杰,黄勇,董正方,赵密. 2019. 城市轨道交通结构抗震设计[M]. 北京:中国建筑工业出版社:135−136. Wang J J,Huang Y,Dong Z F,Zhao M. 2019. Seismic Design of Urban Rail Transit Structure[M]. Beijing:China Architecture & Building Press:135−136 (in Chinese).
谢俊举,温增平,高孟潭,胡聿贤,何少林. 2010. 2008年汶川地震近断层竖向与水平向地震动特征[J]. 地球物理学报,53(8):1796–1805. doi: 10.3969/j.issn.0001-5733.2010.08.005 Xie J J,Wen Z P,Gao M T,Hu Y X,He S L. 2010. Characteristics of near-fault vertical and horizontal ground motion from the 2008 Wenchuan earthquake[J]. Chinese Journal of Geophysics,53(8):1796–1805 (in Chinese).
谢礼立,翟长海. 2003. 最不利设计地震动研究[J]. 地震学报,25(3):250–261. doi: 10.3321/j.issn:0253-3782.2003.03.003 Xie L L,Zhai C H. 2003. Study on the severest real ground motion for seismic design and analysis[J]. Acta Seismologica Sinica,25(3):250–261 (in Chinese).
徐锡伟,闻学泽,叶建青,马保起,陈杰,周荣军,何宏林,田勤俭,何玉林,王志才,孙昭民,冯希杰,于贵华,陈立春,陈桂华,于慎鄂,冉勇康,李细光,李陈侠,安艳芬. 2008. 汶川MS8.0地震地表破裂带及其发震构造[J]. 地震地质,30(3):597–629. doi: 10.3969/j.issn.0253-4967.2008.03.003 Xu X W,Wen X Z,Ye J Q,Ma B Q,Chen J,Zhou R J,He H L,Tian Q J,He Y L,Wang Z C,Sun Z M,Feng X J,Yu G H,Chen L C,Chen G H,Yu S E,Ran Y K,Li X G,Li C X,An Y F. 2008. The MS8.0 Wenchuan earthquake surface ruptures and its seismogenic structure[J]. Seismology and Geology,30(3):597–629 (in Chinese).
赵晓芬,温增平,谢俊举,解全才,刘奕君. 2021. 2018年台湾花莲MW6.4地震近断层地震动方向性差异[J]. 振动与冲击,40(10):235–243. Zhao X F,Wen Z P,Xie J J,Xie Q C,Liu Y J. 2021. Ground motion directionality in the 2018 Taiwan Hualien MW6.4 earthquake[J]. Journal of Vibration and Shock,40(10):235–243 (in Chinese).
Hong H P,Goda K. 2010. Characteristics of horizontal ground motion measures along principal directions[J]. Earthq Eng Eng Vib,9(1):9–22. doi: 10.1007/s11803-010-9048-x
Kojika B,Ohtani K,Katayama T. 1999. Characteristics of three-demensional strong ground motions along principal axes[C]//12th World Conference on Earthquake Engineering. Auckland:New Zealand National Society for Earthquake Engineering:1348−1355.
Kubo T,Penzien J. 1979. Simulation of three-dimensional strong ground motions along principal axes,San Fernando earthquake[J]. Earthq Eng Struct Dyn,7(3):279–294.
Lee S J,Lin T C,Liu T Y,Wong T P. 2019. Fault-to-fault jumping rupture of the 2018 MW6.4 Hualien earthquake in eastern Taiwan[J]. Seismol Res Lett,90(1):30–39. doi: 10.1785/0220180182
Li Y G. 2019. Earthquake and Disaster Risk:Decade Retrospective of the Wenchuan Earthquake[M]. Singapore:Higher Education Press:36−38.
Penzien J,Watabe M. 1974. Characteristics of 3-dimensional earthquake ground motions[J]. Earthq Eng Struct Dyn,3(4):365–373.
Phung V,Lau D,Hao H. 2006. Principal axes of strong ground motion records of the 1999 Chi-Chi,Taiwan earthquake[C]//4th International Conference on Earthquake Engineering. Taipei:NCREE:088.
Smeby W,der Kiureghian A. 1985. Modal combination rules for multicomponent earthquake excitation[J]. Earthq Eng Struct Dyn,13(1):1–12.
-
期刊类型引用(4)
1. 谢张迪,于湘伟,章文波. 2022年青海门源M_W6.6地震震源动力学破裂过程. 地震学报. 2025(01): 21-36 . 本站查看
2. 罗超,曹晓雨,高阳,徐飞,冯怀平,王昊. GP断层破裂模型在青海门源M_S6.9地震强地面运动模拟的适用性研究. 地球物理学报. 2024(02): 534-547 . 百度学术
3. 王子博,刘瑞丰,李赞,胡岩松,孔韩东. 2022年1月8日青海门源M_S6.9地震的静态和动态震源参数测定. 地球物理学报. 2023(06): 2420-2430 . 百度学术
4. 张海,高俊焱,王岱,刘中宪,李程程,张聪. 青海门源M_S6.9地震强地面运动精细化模拟. 震灾防御技术. 2023(03): 462-470 . 百度学术
其他类型引用(3)