地震波动谱元法数值模拟研究进展

邢浩洁, 李鸿晶, 南锐锐

邢浩洁,李鸿晶,南锐锐. 2025. 地震波动谱元法数值模拟研究进展. 地震学报,47(0):1−39. DOI: 10.11939/jass.20240112
引用本文: 邢浩洁,李鸿晶,南锐锐. 2025. 地震波动谱元法数值模拟研究进展. 地震学报,47(0):1−39. DOI: 10.11939/jass.20240112
Xing H J,Li H J,Nan R R. 2025. A state-of-the-art review of the numerical simulation of seismic wave motion based on spectral element method. Acta Seismologica Sinica47(0):1−39. DOI: 10.11939/jass.20240112
Citation: Xing H J,Li H J,Nan R R. 2025. A state-of-the-art review of the numerical simulation of seismic wave motion based on spectral element method. Acta Seismologica Sinica47(0):1−39. DOI: 10.11939/jass.20240112

地震波动谱元法数值模拟研究进展

基金项目: 国家自然科学基金(52378519)、中国地震局地球物理研究所基本科研业务费专项(DQJB22B22)、国家自然科学基金(52208508)和中国地震局地球物理研究所基本科研业务费专项(DQJB23R27)联合资助
详细信息
    作者简介:

    邢浩洁,博士,副研究员,主要从事地震波动数值模拟的理论与方法研究,e-mail:wavexing@163.com

    通讯作者:

    李鸿晶,博士,教授,主要从事地震工程研究,e-mail:hjing@njtech.edu.cn

  • 中图分类号: P315.9,P315.2

A state-of-the-art review of the numerical simulation of seismic wave motion based on spectral element method

  • 摘要:

    基于谱元法(spectral element method,SEM)的地震波动数值模拟已被广泛用于地震震源破裂、大规模地震波传播、区域复杂场地及工程结构(群)地震反应、地震层析成像等重要问题的研究及应用当中,是目前地震工程学、地震学和地球物理学等地震科技领域共同关注的前沿热点技术。早期发展的Chebyshev谱元法(CSEM)和Legendre谱元法(LSEM)更接近谱方法的域分解思路,形式相对复杂且计算效率较低。目前广泛使用的是一种简洁形式的LSEM,其实施步骤和主要公式已经与有限元法完全一致,仅通过内置的Gauss-Lobatto-Legendre(GLL)高精度数值积分保留着与谱方法之间的联系。谱元法的巨大成功不仅源于算法本身的高精度、规整性和灵活性,更是得益于以SPECFEM2D/3D,SPECFEM_GLOBE,SPEED等为代表的开源软件集成了实现复杂模拟所需的三维复杂模型、不同地震震源模型或平面波输入、大规模并行计算、全球模拟、伴随方法(adjoint method)以及多尺度或不连续建模等关键技术。本文全面介绍CSEM、LSEM、间断伽辽金谱元法(discontinuous Galerkin,DG-SEM或DGM)、三角形单元谱元法、谱元法精度和稳定性方面的研究及应用进展,并详细阐述谱元法在我国的发展历程以及我国学者关于谱元法研究与工程应用的学术贡献。

    Abstract:

    The spectral element method (SEM)-based numerical simulation of seismic wave motion has been widely applied in the study of earthquake source rupture process, large-scale seismic wave propagation, seismic response of regional complex sites without/with engineering structures (systems), seismic tomography, and so forth. This technique is currently a frontier hotspot of common concern in the fields of earthquake science and technology including earthquake engineering, seismology, geophysics, et al. Spectral element method, which is sometimes also termed as spectral finite element method (SPECFEM) or spectral/hp element method, is a combination of spectral method and finite element method (FEM). Hence, it shares the advantages of both the two methods, i.e., the high accuracy and fast convergence of spectral method, and the regularity and flexibility of FEM.

    In early times, the Chebyshev spectral element method (CSEM) and Legendre spectral element method (LSEM) are originated from the domain decomposition of spectral methods, and therefore they inherit the complicated formulations of the latter, in which each of the interpolation basis functions is a linear combination of Chebyshev or Legendre orthogonal polynomials. Consequently, both the methods are as accurate as the spectral methods, but their applications are severely limited by the cumbersome and inefficient multi-layer nested computational structure that is resulted from those basis functions. Nowadays, the most frequently-used SEM is a concise form of LSEM developed by Komatitsch et al. In this method, the early-used complicated basis functions are simplified to the Lagrange shape functions that are commonly adopted in FEM, and those orthogonal polynomial-based analytical Gauss-Lobatto-Legendre (GLL) quadrature formulae are replaced by a simple numerical list of the GLL point coordinates and integration weights. Specifically, the non-equally distributed GLL points serve as the element nodes and the GLL high-precision numerical integration formula is applied to calculate the element mass, stiffness matrices and etc. This configuration makes the LSEM enjoy the same solution procedure and computational formulations as that of FEM, but avoid the significant defects of the classical high-order finite element method, including the intrinsic numerical error of the high-order polynomial interpolation based on equally-spaced grid and the lower computational efficiency due to the high-order consistent mass matrix. In a word, this LSEM has actually become a high-performance lumped-mass high-order finite element method. In addition to the above methods, the family of non-conforming spectral element methods has also been broadly studied and successfully applied in many problems, making themselves an important branch of the SEM. By introducing the so-called Lagrange multiplier or interior penalty term as a glue to effectively connect spectral elements with quite diffetent sizes, orders, shapes and so on, the non-conforming SEMs are more flexible and highly efficient in dealing with multi-scale or discontinuous problems, which apear frequently in large-scale or complicated seismic wave simulations.

    The great success of SEM is not only due to the high accuracy, regularity and flexibility of the algorithm itself, but also attributed to those well-designed open-source SEM programs represented by SPECFEM2D/3D, SPECFEM_GLOBE, SPEED, etc. have incorporated a variety of key technologies that are required in complex simulations, such as three-dimensional complex models, different seismic source models or plane wave input method, large-scale parallel computing, global simulation, adjoint method, multi-scale or discontinuous modeling and so on. In the field of earthquake engineering, the SEM has been applied to perform physics-based deterministic numerical simulation of strong ground motion and to realize the “end-to-end” seismic response analysis that is from the source rupture to engineering structures or even engineering systems. The massive simulation data is a good supplement to the insufficient strong ground motion records, and the modeling of seismic wave propagation in actual geolocial structures can compensate for the weak physical background of traditional ground motion prediction equations (GMPEs) or stochastic methods. These simulations, which have reached a certain level of reliability, bring new vitality to earthquake engineering research and application. In the fields of seismology or geophysics, the highly-efficient forward simulation of SEM has been combined with the adjoint method, enabling a simultaneous modeling of the seismic wave fields generated from a number of observation stations, thus the number of forward simulations required for an inversion process can be reduced to an acceptable level. In this way, the advanced full wave inversion (FWI) or seismic tomography technique has been practically used to investigate seismic source mechanisms and to reveal regional or even global velocity structures. Finally, the development of SEM in China is elaborated. The SEM was introduced into China around the year of 2000, and the related studies mainly focused on the basic performance of the method and some preliminary applications until early 2010 s. In the past decade, the Chinese researchers have been conducting more and more innovative work on the SEM algorithms and various engineering applications, and some of the work has reached the research forefront of the world.

  • 图  1   标量波情形下1—10阶谱元法的网格频散曲线(De Basabe,Sen,2007

    Figure  1.   Grid dispersion curves of 1st- to 10th-order spectral elements in acoustic case (De Basabe,Sen,2007

    1   Gauss-Lobatto-Legendre高精度数值积分的节点和权系数

    1   The nodes and weights of Gauss-Lobatto-Legendre high-precision numerical integration

    GLL节点数 积分节点 积分权系数
    2 ±1 1
    3 0 1.333 333 333 333 333 3
    ±1 0.333 333 333 333 333 3
    4 ±0.447 213 595 499 957 9 0.833 333 333 333 333 4
    ±1 0.166 666 666 666 666 7
    5 0 0.711 111 111 111 111 1
    ±0.654 653 670 707 977 2 0.544 444 444 444 444 5
    ±1 0.100 000 000 000 000 0
    6 ±0.285 231 516 480 645 1 0.554 858 377 035 486 2
    ±0.765 055 323 929 464 7 0.378 474 956 297 847 0
    ±1 0.066 666 666 666 666 7
    7 0 0.487 619 047 619 047 6
    ±0.468 848 793 470 714 2 0.431 745 381 209 862 7
    ±0.830 223 896 278 567 0 0.276 826 047 361 565 9
    ±1 0.047 619 047 619 047 6
    8 ±0.209 299 217 902 478 9 0.412 458 794 658 703 8
    ±0.591 700 181 433 142 3 0.341 122 692 483 504 4
    ±0.871 740 148 509 606 6 0.210 704 227 143 506 1
    ±1 0.035 714 285 714 285 7
    9 0 0.371 519 274 376 417 2
    ±0.363 117 463 826 178 2 0.346 428 510 973 046 3
    ±0.677 186 279 510 737 7 0.274 538 712 500 161 7
    ±0.899 757 995 411 460 2 0.165 495 361 560 805 5
    ±1 0.027 777 777 777 777 8
    10 ±0.165 278 957 666 387 0 0.327 539 761 183 897 6
    ±0.477 924 949 810 444 5 0.292 042 683 679 683 8
    ±0.738 773 865 105 505 0 0.224 889 342 063 126 4
    ±0.919 533 908 166 458 9 0.133 305 990 851 070 1
    ±1 0.022 222 222 222 222 2
    注:积分节点和权系数的数目与GLL节点数相对应,数值相同、正负号不同的积分节点对应相同的积分权系数,为简化起见,表中只列出一个。
    下载: 导出CSV

    表  1   谱元法结合二阶中心差分求解格式的稳定条件(De Basabe,Sen,2010

    Table  1   Stability criteria for spectral element method solved by classical second-order centered-difference time integration algorithm (De Basabe,Sen,2010

    谱单元阶次12345678
    标量波情形
    (SH波动)
    qEmax0.7090.2880.1640.1040.07140.05160.039 00.030 4
    qdmax0.7090.5770.5930.6040.6080.6080.6080.607
    弹性波情形
    (P-SV波动)
    qEmax0.8160.3330.1890.1200.082 30.059 50.044 90.035 0
    qdmax0.8160.6660.6840.6970.7000.7000.7000.699
    下载: 导出CSV
  • 巴振宁,赵靖轩,桑巧稚,梁建文. 2024. 基于Davidenkov本构模型的三维沉积盆地非线性地震动谱元法模拟[J]. 岩土工程学报,46(7):1387–1397. doi: 10.11779/CJGE20230582

    Ba Z N,Zhao J X,Sang Q Z,Liang J W. 2024. Nonlinear ground motion simulation of three-dimensional sedimentary basin based on Davidenkov constitutive model and spectral element method[J]. Chinese Journal of Geotechnical Engineering,46(7):1387–1397 (in Chinese).

    巴振宁,赵靖轩,张郁山,梁建文,张玉洁. 2023. 基于GP14.3运动学混合震源模型和SPECFEM3D谱元法的宽频地震动模拟[J]. 地球物理学报,66(3):1125–1138. doi: 10.6038/cjg2022Q0181

    Ba Z N,Zhao J X,Zhang Y S,Liang J W,Zhang Y J. 2023. Broadband ground motion spectral element simulation based on GP14.3 kinematic hybrid source model and SPECFEM3D[J]. Chinese Journal of Geophysics,66(3):1125–1138 (in Chinese).

    曹丹平,周建科,印兴耀. 2015. 三角网格有限元法波动模拟的数值频散及稳定性研究[J]. 地球物理学报,58(5):1717–1730. doi: 10.6038/cjg20150522

    Cao D P,Zhou J K,Yin X Y. 2015. The study for numerical dispersion and stability of wave motion with triangle-based finite element algorithm[J]. Chinese Journal of Geophysics,58(5):1717–1730 (in Chinese).

    车承轩. 2007. 谱元法模拟起伏自由表面地层中的弹性波传播[D]. 大庆:大庆石油学院:1−49.

    Che C X. 2007. The Spectral Element Method for Elastic Wave Simulation in a Formation with a Topographic Traction Free Surface[D]. Daqing:Daqing Petroleum Institute:1−49 (in Chinese).

    陈少林,程书林,柯小飞. 2019b. 海洋地震工程流固耦合问题统一计算框架——不规则界面情形[J]. 力学学报,51(5):1517–1529.

    Chen S L,Cheng S L,Ke X F. 2019b. A unified computational framework for fluid-solid coupling in marine earthquake engineering:Irregular interface case[J]. Chinese Journal of Theoretical and Applied Mechanics,51(5):1517–1529.

    陈少林,柯小飞,张洪翔. 2019a. 海洋地震工程流固耦合问题统一计算框架[J]. 力学学报,51(2):594–606.

    Chen S L,Ke X F,Zhang H X. 2019a. A unified computational framework for fluid-solid coupling in marine earthquake engineering[J]. Chinese Journal of Theoretical and Applied Mechanics,51(2):594–606.

    戴志军,李小军,侯春林. 2015. 谱元法与透射边界的配合使用及其稳定性研究[J]. 工程力学,32(11):40–50. doi: 10.6052/j.issn.1000-4750.2014.03.0196

    Dai Z J,Li X J,Hou C L. 2015. A combination usage of transmitting formula and spectral element method and the study of its stability[J]. Engineering Mechanics,32(11):40–50 (in Chinese).

    董兴朋,杨顶辉. 2017. 球坐标系下谱元法三维地震波场模拟[J]. 地球物理学报,60(12):4671–4680. doi: 10.6038/cjg20171211

    Dong X P,Yang D H. 2017. Numerical modeling of the 3-D seismic wave field with the spectral element method in spherical coordinates[J]. Chinese Journal of Geophysics,60(12):4671–4680 (in Chinese).

    贺春晖,王进廷,张楚汉. 2017. 基于震源-河谷波场数值模拟的坝址地震动参数确定方法[J]. 地球物理学报,60(2):585–592. doi: 10.6038/cjg20170213

    He C H,Wang J T,Zhang C H. 2017. Determination of seismic parameters for dam sites by numerical simulation of the rupture-canyon wave field[J]. Chinese Journal of Geophysics,60(2):585–592 (in Chinese).

    胡元鑫,刘新荣,罗建华,张梁,葛华. 2011. 汶川震区地震动三维地形效应的谱元法模拟[J]. 兰州大学学报(自然科学版),47(4):24–32.

    Hu Y X,Liu X R,Luo J H,Zhang L,Ge H. 2011. Simulation of three-dimensional topographic effects on seismic ground motion in Wenchuan earthquake region based upon the spectral-element method[J]. Journal of Lanzhou University (Natural Sciences),47(4):24–32 (in Chinese).

    蒋涵,周红,高孟潭. 2015. 山脊线与坡度和峰值速度放大系数的相关性研究[J]. 地球物理学报,58(1):229–237. doi: 10.6038/cjg20150120

    Jiang H,Zhou H,Gao M T. 2015. A study on the correlation of the ridge line and slope with peak ground velocity amplification factor[J]. Chinese Journal of Geophysics,58(1):229–237 (in Chinese).

    孔曦骏,邢浩洁,李鸿晶. 2022. 流固耦合地震波动问题的显式谱元模拟方法[J]. 力学学报,54(9):2513–2528. doi: 10.6052/0459-1879-22-068

    Kong X J,Xing H J,Li H J. 2022. An explicit spectral-element approach to fluid-solid coupling problems in seismic wave propagation[J]. Chinese Journal of Theoretical and Applied Mechanics,54(9):2513–2528 (in Chinese).

    李冰非,董兴朋,李小凡,司洁戈. 2019. 基于辛-谱元-FK 混合方法的保结构远震波场模拟[J]. 地球物理学报,62(11):4339–4352. doi: 10.6038/cjg2019M0688

    Li B F,Dong X P,Li X F,Si J G. 2019. Structure-preserving modeling of teleseismic wavefield using symplectic SEM-FK hybrid method[J]. Chinese Journal of Geophysics,62(11):4339–4352 (in Chiese).

    李冰非,李小凡,李峰,龚飞. 2021. 基于辛-谱元方法的地球自由振荡保弥散衰减数值模拟[J]. 地球物理学报,64(11):4022–4030. doi: 10.6038/cjg2021P0019

    Li B F,Li X F,Li F,Gong F. 2021. Dissipation preserving simulation for Earth’s free oscillations based on symplectic spectral element method[J]. Chinese Journal of Geophysics,64(11):4022–4030 (in Chinese).

    李昊臻,刘少林,董兴朋,蒙伟娟,杨顶辉. 2024. 基于逐元和轴对称谱元的混合方法及远震波场模拟[J]. 地球物理学报,67(5):1819–1831. doi: 10.6038/cjg2023R0180

    Li H Z,Liu S L,Dong X P,Meng W J,Yang D H. 2024. Hybrid method based on element-by-element and axisymmetric spectral element method for teleseismic wavefield simulation[J]. Chinese Journal of Geophysics,67(5):1819–1831 (in Chinese).

    李鸿晶,王竞雄. 2022. 时域谱元法的质量特性模型及其构建方法[J]. 地震学报,44(1):60–75. doi: 10.11939/jass.20210117

    Li H J,Wang J X. 2022. The mass property model and its implementation in the time-domain spectral element method[J]. Acta Seismologica Sinica,44(1):60–75 (in Chinese).

    李琳,刘韬,胡天跃. 2014. 三角谱元法及其在地震正演模拟中的应用[J]. 地球物理学报,57(4):1224–1234. doi: 10.6038/cjg20140419

    Li L,Liu T,Hu T Y. 2014. Spectra element method with triangular mesh and its application in seismic modeling[J]. Chinese Journal of Geophysics,57(4):1224–1234 (in Chinese).

    李孝波. 2014. 基于谱元法的玉田震害异常研究[D]. 哈尔滨:中国地震局工程力学研究所:1−136.

    Li X B. 2014. The Investigation of Seismic Damage Anomaly in Yutian based on Spectral Element Method[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration:1−136 (in Chinese).

    林伟军,苏畅,Seriani G. 2018. 多网格谱元法及其在高性能计算中的应用[J]. 应用声学,37(1):42–52. doi: 10.11684/j.issn.1000-310X.2018.01.007

    Lin W J,Su C,Seriani G. 2018. The poly-grid spectral element method and its application in high performance computing[J]. Journal of Applied Acoustics,37(1):42–52 (in Chinese).

    林伟军,王秀明,张海澜. 2005. 用于弹性波方程模拟的基于逐元技术的谱元法[J]. 自然科学进展,15(9):1048–1057. doi: 10.3321/j.issn:1002-008X.2005.09.004

    Lin W J,Wang X M,Zhang H L. 2005. An element-by-element spectral element method for the modeling of elastic wave equation[J]. Progress in Natural Science,15(9):1048–1057 (in Chinese).

    林伟军. 2007. 弹性波传播模拟的Chebyshev谱元法[J]. 声学学报,32(6):525–533. doi: 10.3321/j.issn:0371-0025.2007.06.007

    Lin W J. 2007. A Chebyshev spectral element method for elastic wave modeling[J]. Acta Acustica,32(6):525–533 (in Chinese).

    刘晶波,廖振鹏. 1989. 离散网格中的弹性波动(Ⅱ)--几种有限元离散模型的对比分析[J]. 地震工程与工程振动, 9 (2):1−11.

    Liu J B,Liao Z P. 1989. Elastic wave motion in discrete grids (II) – Comparison of common finite element models[J]. Earthquake Engineering and Engineering Vibration,9(2):1–11 (in Chinese).

    刘晶波,廖振鹏. 1990. 离散网格中的弹性波动(Ⅲ)--时域离散化对波传播规律的影响[J]. 地震工程与工程振动, 10 (2):1−10.

    Liu J B,Liao Z P. 1990. Elastic wave motion in discrete grids (III) – The effect of discretization in time domain on wave motion[J]. Earthquake Engineering and Engineering Vibration,10(2):1–10 (in Chinese).

    刘启方,于彦彦,章旭斌. 2013. 施甸盆地三维地震动研究[J]. 地震工程与工程振动,33(4):54–60.

    Liu Q F,Yu Y Y,Zhang X B. 2013. Three-dimensional ground motion simulation of Shidian basin[J]. Journal of Earthquake Engineering and Engineering Vibration,33(4):54–60 (in Chinese).

    刘少林,李小凡,刘有山,朱童,张美根. 2014. 三角网格有限元法声波与弹性波模拟频散分析[J]. 地球物理学报,57(8):2620–2630. doi: 10.6038/cjg20140821

    Liu S L,Li X F,Liu Y S,Zhu T,Zhang M G. 2014. Dispersion analysis of triangle-based finite element method for acoustic and elastic wave simulations[J]. Chinese Journal of Geophysics,57(8):2620–2630 (in Chinese).

    刘少林,杨顶辉,孟雪莉,汪文帅,徐锡伟,李小凡. 2022. 模拟地震波传播的优化质量矩阵Legendre谱元法[J]. 地球物理学报,65(12):4802–4815. doi: 10.6038/cjg2022Q0145

    Liu S L,Yang D H,Meng X L,Wang W S,Xu X W,Li X F. 2022. A Legendre spectral element method with optimal mass matrix for seismic wave modeling[J]. Chinese Journal of Geophysics,65(12):4802–4815 (in Chinese).

    刘少林,杨顶辉,徐锡伟,李小凡,申文豪,刘有山. 2021. 模拟地震波传播的三维逐元并行谱元法[J]. 地球物理学报,64(3):993–1005. doi: 10.6038/cjg2021O0405

    Liu S L,Yang D H,Xu X W,Li X F,Shen W H,Liu Y S. 2021. Three-dimensional element-by-element parallel spectral-element method for seismic wave modeling[J]. Chinese Journal of Geophysics,64(3):993–1005 (in Chinese).

    刘有山,刘少林,张美根,马德堂. 2012. 一种改进的二阶弹性波动方程的最佳匹配层吸收边界条件[J]. 地球物理学进展,27(5):2113. doi: 10.6038/j.issn.1004-2903.2012.05.036

    Liu Y S,Liu S L,Zhang M G,Ma D T. 2012. An improved perfectly matched layer absorbing boundary condition for second order elastic wave equation[J]. Progress in Geophysics,27(5):2113 (in Chinese).

    刘有山,滕吉文,徐涛,刘少林,司芗,马学英. 2014. 三角网格谱元法地震波场数值模拟[J]. 地球物理学进展,29(4):1715–1726. doi: 10.6038/pg20140430

    Liu Y S,Teng J W,Xu T,Liu S L,Si X,Ma X Y. 2014. Numerical modeling of seismic wavefield with the SEM based on triangles[J]. Progress in Geophysics,29(4):1715–1726 (in Chinese).

    陆新征,田源,许镇,熊琛. 2021. 城市抗震弹塑性分析[M]. 北京:清华大学出版社:237−317.

    Lu X Z,Tian Y,Xu Z,Xiong C. 2021. Elastoplastic Analysis of Urban Seismic Resistance[M]. Beijing:Tsinghua University Press:237−317 (in Chinese).

    孟雪莉,刘少林,杨顶辉,汪文帅,徐锡伟,李小凡. 2022. 基于优化数值积分的谱元法模拟地震波传播[J]. 石油地球物理勘探,57(3):602–612.

    Meng X L,Liu S L,Yang D H,Wang W S,Xu X W,Li X F. 2022. Simulating seismic wave propagation using spectral element method based on optimized numerical integration[J]. Geophysical Exploration of Petroleum,57(3):602–612 (in Chinese).

    秦国良,徐忠. 2000. 谱元方法求解二维不可压缩Navier-Stokes方程[J]. 应用力学学报,17(4):20–25. doi: 10.3969/j.issn.1000-4939.2000.04.004

    Qin G L,Xu Z. 2000. A spectral element method for incompressible Navier-Stokes equations[J]. Chinese Journal of Applied Mechanics,17(4):20–25 (in Chinese).

    秦国良,徐忠. 2001. 谱元方法求解正方形封闭空腔内的自然对流换热[J]. 计算物理,18(2):119–124. doi: 10.3969/j.issn.1001-246X.2001.02.005

    Qin G L,Xu Z. 2001. Computation of natural convection in two-dimensional cavity using spectral element method[J]. Chinese Journal of Computational Physics,18(2):119–124 (in Chinese).

    任骏声,张怀,周元泽,张振,石耀霖. 2024. 基于卷积滤波的谱元法在长时程波场模拟中的应用[J]. 地球物理学报,67(5):1832–1838. doi: 10.6038/cjg2022Q0160

    Ren J S,Zhang H,Zhou Y Z,Zhang Z,Shi Y L. 2024. Application of spectral element method based on convolving filtering in long-term wavefield modeling[J]. Chinese Journal of Geophysics,67(5):1832–1838 (in Chinese).

    唐杰. 2011. 气枪激发信号传播的谱元法数值模拟研究[J]. 地球物理学报,54(9):2348–2356. doi: 10.3969/j.issn.0001-5733.2011.09.018

    Tang J. 2011. Study on SEM numerical simulation of airgun signal transition[J]. Chinese Journal of Geophysics,54(9):2348–2356 (in Chinese).

    汪文帅,李小凡,鲁明文,张美根. 2012. 基于多辛结构谱元法的保结构地震波场模拟[J]. 地球物理学报,55(10):3427–3439. doi: 10.6038/j.issn.0001-5733.2012.10.026

    Wang W S,Li X F,Lu M W,Zhang M G. 2012. Structure-preserving modeling for seismic wave fields based on a multisymplectic spectral element method[J]. Chinese Journal of Geophysics,55(10):3427–3439 (in Chinese).

    汪文帅,李小凡. 2013. 基于辛格式的谱元法及其在横向各向同性介质波场模拟中的应用[J]. 数值计算与计算机应用,34(1):20–30. doi: 10.3969/j.issn.1000-3266.2013.01.003

    Wang W S,Li X F. 2013. The SEM based on symplectical schemes and its application in modeling the wave propagation in transversely isotropic media[J]. Journal on Numerical Methods and Computer Applications,34(1):20–30 (in Chinese).

    汪文帅,张怀,李小凡. 2013. 间断的 Galerkin 方法在地震波场数值模拟中的应用概述[J]. 地球物理学进展,28(1):171–179. doi: 10.6038/pg20130118

    Wang W S,Zhang H,Li X F. 2013. Review on application of the discontinuous Galerkin method for modeling of the seismic wavefield[J]. Progress in Geophysics,28(1):171–179 (in Chinese).

    王竞雄,李鸿晶,邢浩洁. 2022. 水平成层场地地震反应的集中质量切比雪夫谱元分析方法[J]. 地震学报,44(1):76–86. doi: 10.11939/jass.20210091

    Wang J X,Li H J,Xing H J. 2022. The Lumped mass Chebyshev spectral element method for seismic response analysis of horizontally layered soil sites[J]. Acta Seismologica Sinica,44(1):76–86 (in Chinese).

    王童奎,李瑞华,李小凡,张美根,龙桂华. 2007. 横向各向同性介质中地震波场谱元法数值模拟[J]. 地球物理学进展,22(3):778–784. doi: 10.3969/j.issn.1004-2903.2007.03.018

    Wang T K,Li R H,Li X F,Zhang M G,Long G H. 2007. Numerical spectral element modeling for seismic wave propagation in transversely isotropic medium[J]. Progress in Geophysics,22(3):778–784 (in Chinese).

    王童奎,谢占安,付兴深,高文中,刘萱. 2009. 弹性介质中谱元法叠后逆时偏移方法研究[J]. 石油物探,48(4):354–358. doi: 10.3969/j.issn.1000-1441.2009.04.006

    Wang T K,Xie Z A,Fu X S,Gao W Z,Liu X. 2009. Research on post-stack reverse-time migration in elastic media based on spectral element method[J]. Geophysical Prospecting for Petroleum,48(4):354–358 (in Chinese).

    王秀明,Seriani G,林伟军. 2007. 利用谱元法计算弹性波场的若干理论问题[J]. 中国科学:G辑,37(1):41–59.

    Wang X M,Seriani G,Lin W J. 2007. Several theoretical issues on the spectral-element calculation of elastic wave field[J]. Science China Series G,37(1):41–59 (in Chinese).

    向新民. 2000. 谱方法的数值分析[M]. 北京:科学出版社:1−327.

    Xiang X M. 2000. Numerical Analysis of Spectral Methods[M]. Beijing:Science Press:1−327 (in Chinese).

    谢志南,章旭斌. 2017,弱形式时域完美匹配层[J]. 地球物理学报, 60 (10):3823−3831.

    Xie Z N,Zhang X B. 2017. Weak-form time-domain perfectly matched layer[J]. Chinese Journal of Geophysics,60(10):3823–3831 (in Chinese).

    谢志南,郑永路,章旭斌,唐丽华. 2019. 弱形式时域完美匹配层——滞弹性近场波动数值模拟[J]. 地球物理学报,62(8):3140–3154. doi: 10.6038/cjg2019M0425

    Xie Z N,Zheng Y L,Zhang X B,Tang L H. 2019. Weak-form time-domain perfectly matched layer for numerical simulation of viscoelastic wave propagation in infinite domain[J]. Chinese Journal of Geophysics,62(8):3140–3154 (in Chinese).

    谢志南,郑永路,章旭斌. 2018. 常Q滞弹性介质地震波动数值模拟——时域本构优化逼近[J]. 地球物理学报,61(10):4007–4020. doi: 10.6038/cjg2018L0704

    Xie Z N,Zheng Y L,Zhang X B. 2018. Optimized approximation for constitution of constant Q viscoelastic media in time domain seismic wave simulation[J]. Chinese Journal of Geophysics,61(10):4007–4020 (in Chinese).

    邢浩洁,李鸿晶,李小军. 2021a. 一维波动有限元模拟中透射边界的时域稳定条件[J]. 应用基础与工程科学学报,29(3):617–632.

    Xing H J,Li H J,Li X J. 2021a. Time-domain stability conditions of multi-transmitting formula in one-dimensional finite element simulation of wave motion[J]. Journal of Basic Science and Engineering,29(3):617–632 (in Chinese).

    邢浩洁,李鸿晶,杨笑梅. 2017. 基于切比雪夫谱元模型的成层场地地震反应分析[J]. 岩土力学,38(2):593–600.

    Xing H J,Li H J,Yang X M. 2017. Seismic response analysis of horizontal layered soil sites based on Chebyshev spectral element model[J]. Rock and Soil Mechanics,2017, 38 (2):593−600 (in Chinese).

    邢浩洁,李鸿晶. 2017a. 透射边界条件在波动谱元模拟中的实现:一维波动[J]. 力学学报,49(2):367–379.

    Xing H J,Li H J. 2017b. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method:One dimension case[J]. Chinese Journal of Theoretical and Applied Mechanics,49(2):367–379 (in Chinese).

    邢浩洁,李鸿晶. 2017b. 透射边界条件在波动谱元模拟中的实现:二维波动[J]. 力学学报,49(4):894–906.

    Xing H J,Li H J. 2017b. Implementation of multi-transmitting boundary condition for wave motion simulation by spectral element method:Two dimension case[J]. Chinese Journal of Theoretical and Applied Mechanics,49(4):894–906 (in Chinese).

    邢浩洁,李鸿晶. 2017c. 波动切比雪夫谱元模拟的时间积分方法研究[J]. 南京工业大学学报(自然科学版),39(2):70–76.

    Xing H J,Li H J. 2017c. Investigation of time integration method for Chebyshev spectral element simulation of wave motion[J]. Journal of Nanjing Tech University (Natural Science Edition),39(2):70–76 (in Chinese).

    邢浩洁,李小军,刘爱文,李鸿晶,周正华,陈苏. 2021b. 波动数值模拟中的外推型人工边界条件[J]. 力学学报,53(5):1480–1495.

    Xing H J,Li X J,Liu A W,Li H J,Zhou Z H,Chen S. 2021. Extrapolation-type artificial boundary conditions in the numerical simulation of wave motion[J]. Chinese Journal of Theoretical and Applied Mechanics,53(5):1480–1495 (in Chinese).

    邢浩洁,刘爱文,李小军,陈苏,傅磊. 2022. 多人工波速优化透射边界在谱元法地震波动模拟中的应用[J]. 地震学报,44(1):26–39. doi: 10.11939/jass.20210090

    Xing H J,Liu A W,Li X J,Chen S,Fu L. 2022. Application of an optimized transmitting boundary with multiple artificial wave velocities in spectral-element simulation of seismic wave propagation[J]. Acta Seismologica Sinica,44(1):26–39 (in Chinese).

    许传炬,林玉闽. 2000. Poiseuille-Bénard流的出口边界条件及其谱元法计算[J]. 力学学报,32(1):1–10. doi: 10.3321/j.issn:0459-1879.2000.01.001

    Xu C J,Lin Y M. 2000. Open boundary conditions in simulation by spectral element methods of Poiseuille-Bénard channel flow[J]. Chinese Journal of Theoretical and Applied Mechanics,32(1):1–10 (in Chinese).

    严珍珍,张怀,杨长春,石耀霖. 2009. 汶川大地震地震波传播的谱元法数值模拟研究[J]. 中国科学:D辑,39(4):393–402.

    Yan Z Z,Zhang H,Yang C C,Shi Y L. 2009. Study on the seismic wave propagation of the great Wenchuan earthquake by using the numerical simulation of spectral element method[J]. Science China Series D,39(4):393–402 (in Chinese).

    于彦彦,丁海平,刘启方. 2017. 透射边界与谱元法的结合及对波动模拟精度的改进[J]. 振动与冲击, 36 (2):13−22.

    Yu Y Y,Ding H P,Liu Q F. 2017. Integration of transmitting boundary and spectral element method and improvement on the accuracy of wave motion simulation[J]. Journal of Vibration and Shock, 36 (2):13−22 (in Chinese).

    于彦彦,芮志良,丁海平. 2023. 三维局部场地地震波散射问题谱元并行模拟方法[J]. 力学学报,55(6):1342–1354. doi: 10.6052/0459-1879-23-052

    Yu Y Y,Rui Z L,Ding H P. 2023. Parallel spectral element method for 3d local-site ground motion simulations of wave scattering problem[J]. Chinese Journal of Theoretical and Applied Mechanics,55(6):1342–1354 (in Chinese).

    章旭斌,谢志南. 2022. 波动谱元模拟中透射边界稳定性分析[J]. 工程力学,39(10):26–35. doi: 10.6052/j.issn.1000-4750.2021.06.0428

    Zhang X B,Xie Z N. 2022. Stability analysis of transmitting boundary in wave spectral element simulation[J]. Engineering Mechanics,39(10):26–35 (in Chinese).

    赵靖轩,巴振宁,阔晨阳,刘博佳. 2023. 2022年9月5日泸定MS6.8地震宽频带地震动谱元法模拟[J]. 地震学报,45(2):179–195. doi: 10.11939/jass.20220190

    Zhao J X,Ba Z N,Kuo C Y,Liu B J. 2023. Broadband ground motion simulations applied to the Luding MS6.8 earthquake on September 5,2022 based on spectral element method[J]. Acta Seismologica Sinica,45(2):179–195 (in Chinese).

    周红,高孟潭,俞言祥. 2010. SH 波地形效应特征的研究[J]. 地球物理学进展,25(3):775–782. doi: 10.3969/j.issn.1004-2903.2010.03.005

    Zhou H,Gao M T,Yu Y X. 2010. A study of topographical effect on SH waves[J]. Progress in Geophysics,25(3):775–782 (in Chinese).

    周红. 2018. 九寨沟7.0级地震地表地震动位移及静态位移的模拟研究[J]. 地球物理学报,61(12):4851–4861. doi: 10.6038/cjg2018M0010

    Zhou H. 2018. Research on ground motion displacement and static displacement near the fault of Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics,61(12):4851–4861 (in Chinese).

    朱伯芳. 1998. 有限单元法原理与应用[M]. 第二版. 北京:水利水电出版社:1−176.

    Zhu B F. 1998. The Finite Element Method Theory and Applications[M]. 2nd ed. Beijing:China Water&Power Press:1−176 (in Chinese).

    Abraham J R,Smerzini C,Paolucci R,Lai C G. 2016. Numerical study on basin-edge effects in the seismic response of the Gubbio valley,Central Italy[J]. B Earthq Eng,14:1437–1459. doi: 10.1007/s10518-016-9890-y

    Aguirre V M H,Paolucci R,Sánchez-Sesma F J,Mazzieri I. 2023. Three-dimensional numerical modeling of ground motion in the Valley of Mexico:A case study from the MW3. 2 earthquake of July 17,2019[J]. Earthq Spectra, 39 (4):2323−2351.

    Alford R M,Kelly K R,Boore D M. 1974. Accuracy of finite-difference modeling of the acoustic wave equation[J]. Geophysics,39(6):834–842. doi: 10.1190/1.1440470

    Antonietti P F,Mazzieri I,Quarteroni A,Rapetti F. 2012. Non-conforming high order approximations of the elastodynamics equation[J]. Comput Method Appl M,209:212–238.

    Asmar A H. 2005. Partial Differential Equations with Fourier Series and Boundary Value Problems[M]. 2nd ed. USA:Courier Dover Publications:227−321.

    Ba Z N,Fu J S,Wang F B,Liang J W,Zhang B,Zhang L. 2024a. Physics-based seismic analysis of ancient wood structure:fault-to-structure simulation[J]. Earthq Eng Eng Vib,23(3):727–740. doi: 10.1007/s11803-024-2268-2

    Ba Z N,Sang Q Z,Wu M T,Liang J W. 2021. The revised direct stiffness matrix method for seismogram synthesis due to dislocations:from crustal to geotechnical scale[J]. Geophys J Int,227(1):717–734. doi: 10.1093/gji/ggab248

    Ba Z N,Wu M T,Liang J W,Zhao J X,Lee V W. 2022. A two-step approach combining FK with SE for simulating ground motion due to point dislocation sources[J]. Soil Dyn Earthq Eng,57:107224.

    Ba Z N,Zhao J X,Sang Q Z,Liang J W. 2024b. Nonlinear seismic response of an alluvial basin modelled by spectral element method:Implementation of a Davidenkov constitutive model[J]. J Earthq Eng,1−30.

    Ba Z N,Zhao J X,Wang Y. 2024c. GA-BPNN prediction model of broadband ground motion parameters in Tianjin area driven by synthetic database based on hybrid simulated method[J]. Pure Appl Geophys,181:1195–1220. doi: 10.1007/s00024-024-03431-1

    Ba Z N,Zhao J X,Zhu Z H,Zhou G Y. 2023. 3D physics-based ground motion simulation and topography effects of the 05 September 2022 MW6. 6 Luding earthquake,China[J]. Soil Dyn Earthq Eng, 172 :108048.

    Baker J W,Luco N,Abrahamson N A,Graves R W,Maechling P J,Olsen K B. 2014. Engineering uses of physics-based ground motion simulations[C]//Proceedings of the Tenth US Conference on Earthquake Engineering,Anchorage,Alaska:1−11.

    Bradley B A. 2019. On-going challenges in physics-based ground motion prediction and insights from the 2010–2011 Canterbury and 2016 Kaikoura,New Zealand earthquakes[J]. Soil Dyn Earthq Eng,124:354–364. doi: 10.1016/j.soildyn.2018.04.042

    Briani M,Sommariva A,Vianello M. 2012. Computing Fekete and Lebesgue points:simplex,square,disk[J]. J Comput Appl Math,236(9):2477–2486. doi: 10.1016/j.cam.2011.12.006

    Canuto C,Hussaini M Y,Quarteroni A,Zang T A. 1988. Spectral Methods in Fluid Dynamics[M]. Berlin:Springer-Verlag:1−550.

    Canuto C,Hussaini M Y,Quarteroni A,Zang T A. 2006. Spectral MethodsFundamentals in Single Domains[M]. Berlin:Springer-Verlag:1−552.

    Capdeville Y,Gung Y,Romanowicz B. 2005. Towards global earth tomography using the spectral element method:a technique based on source stacking[J]. Geophys J Int,162(2):541–554. doi: 10.1111/j.1365-246X.2005.02689.x

    Carmona A E,Peter D B,Parisi L,Mai P M. 2024. Anelastic tomography of the Arabian plate[J]. B Seismol Soc Am,114(3):1347–1364.

    Castelli F,Cavallaro A,Grasso S,Lentini V. 2016. Seismic microzoning from synthetic ground motion earthquake scenarios parameters:the case study of the City of Catania (Italy)[J]. Soil Dyn Earthq Eng,88:307–327. doi: 10.1016/j.soildyn.2016.07.010

    Chaljub E,Komatitsch D,Vilotte J P,Capdeville Y,Valette B,Festa G. 2007. Spectral-element analysis in seismology[J]. Adv Geophys,48:365–419.

    Chaljub E,Maufroy E,Moczo P,Kristek J,Hollender F,Bard P Y,Priolo E,Klin P,Martin F,Zhang Z G,Zhang W,Chen X F. 2015. 3-D numerical simulations of earthquake ground motion in sedimentary basins:testing accuracy through stringent models[J]. Geophys J Int,201(1):90–111. doi: 10.1093/gji/ggu472

    Chaljub E,Moczo P,Tsuno S,Bard P Y,Kristek J,Käser M,Stupazzini M,Kristekova M. 2010. Quantitative comparison of four numerical predictions of 3D ground motion in the Grenoble Valley,France[J]. B Seismol Soc Am,100(4):1427–1455. doi: 10.1785/0120090052

    Che C X,Wang X M,Lin W J. 2010. The Chebyshev spectral element method using staggered predictor and corrector for elastic wave simulations[J]. Appl Geophys,7(2):174–184. doi: 10.1007/s11770-010-0242-9

    Chen M,Niu F L,Liu Q Y,Tromp J,Zheng X F. 2015. Multiparameter adjoint tomography of the crust and upper mantle beneath East Asia:1. Model construction and comparisons[J]. J Geophys Res-Sol Ea,120(3):1762–1786. doi: 10.1002/2014JB011638

    Chen M,Niu F L,Tromp J,Lenardic A,Lee C T A,Cao W R,Ribeiro J. 2017. Lithospheric foundering and underthrusting imaged beneath Tibet[J]. Nat Commun,8(1):15659. doi: 10.1038/ncomms15659

    Chen Q,Babuška I. 1995. Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle[J]. Comput Method Appl M, 128 (3−4):405−417.

    Chen Z W,Huang D R,Wang G. 2023a. Large‐scale ground motion simulation of the 2016 Kumamoto earthquake incorporating soil nonlinearity and topographic effects[J]. Earthq Eng Struct D,52(4):956–978. doi: 10.1002/eqe.3795

    Chen Z W,Huang D R,Wang G. 2023b. A regional scale coseismic landslide analysis framework:Integrating physics-based simulation with flexible sliding analysis[J]. Eng Geol,315:107040. doi: 10.1016/j.enggeo.2023.107040

    Cohen G C. 2002. Higher-Order Numerical Methods for Transient Wave Equations[M]. Berlin:Springer:1−346.

    Cohen G,Joly P,Roberts J E,Tordjman N. 2001. Higher order triangular finite elements with mass lumping for the wave equation[J]. SIAM J Numer Anal,38(6):2047–2078. doi: 10.1137/S0036142997329554

    Cui Y,Poyraz E,Olsen K B,Zhu J,Withers K,Callaghan S,Larkin J,Guest C,Choi D,Chourasia A,Shi Z,Day S M,Maechling P J,Jordan T H. 2013. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers[C]//Proceedings of the International Conference on High Performance Computing,Networking,Storage and Analysis:1−12.

    Dauksher W,Emery A F. 1997. Accuracy in modeling the acoustic wave equation with Chebyshev spectral finite elements[J]. Finite Elem Anal Des,26(2):115–128. doi: 10.1016/S0168-874X(96)00075-3

    De Basabe J D,Sen M K,Wheeler M F. 2008. The interior penalty discontinuous Galerkin method for elastic wave propagation:Grid dispersion[J]. Geophys J Int,175(1):83–93. doi: 10.1111/j.1365-246X.2008.03915.x

    De Basabe J D,Sen M K. 2007. Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations[J]. Geophysics,72(6):T81–T95. doi: 10.1190/1.2785046

    De Basabe J D,Sen M K. 2009. New developments in the finite-element method for seismic modeling[J]. The Leading Edge,28(5):562–567. doi: 10.1190/1.3124931

    De Basabe J D,Sen M K. 2010. Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping[J]. Geophys J Int,181(1):577–590. doi: 10.1111/j.1365-246X.2010.04536.x

    De Basabe J D,Sen M K. 2015. A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface[J]. Geophys J Int,200(1):278–298. doi: 10.1093/gji/ggu389

    De Basabe J D. 2009. High-Order Finite Element Methods for Seismic Wave Propagation[D]. Austin:The University of Texas at Austin:1−128.

    Dubiner M. 1991. Spectral methods on triangles and other domains[J]. J Sci Comput,6:345–390. doi: 10.1007/BF01060030

    Dumbser M,Käser M,Toro E F. 2007. An arbitrary high-order Discontinuous Galerkin method for elastic waves on unstructured meshes-V. Local time stepping and p-adaptivity[J]. Geophys J Int,171(2):695–717. doi: 10.1111/j.1365-246X.2007.03427.x

    Dumbser M,Käser M. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—II. The three-dimensional isotropic case[J]. Geophys J Int,167(1):319–336. doi: 10.1111/j.1365-246X.2006.03120.x

    Evangelista L,Del Gaudio S,Smerzini C,d’Onofrio A,Festa G,Iervolino I,Landolfi L,Paolucci R,Santo A,Silvestri F. 2017. Physics-based seismic input for engineering applications:a case study in the Aterno river valley,Central Italy[J]. B Earthq Eng,15:2645–2671. doi: 10.1007/s10518-017-0089-7

    Faccioli E,Maggio F,Paolucci R,Quarteroni A. 1997. 2D and 3D elastic wave propagation by a pseudo-spectral domain decomposition method[J]. J Seismol,1:237–251. doi: 10.1023/A:1009758820546

    Faccioli E,Quarteroni A. 1999. Comment on “The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures,” by D. Komatitsch and J. -P. Vilotte[J]. B Seismol Soc Am, 89 (1):331−331.

    Feng K W,Huang D R,Wang G,Jin F,Chen Z W. 2022. Physics-based large-deformation analysis of coseismic landslides:A multiscale 3D SEM-MPM framework with application to the Hongshiyan landslide[J]. Eng Geol,297:106487. doi: 10.1016/j.enggeo.2021.106487

    Fichtner A,Simutė S. 2018. Hamiltonian Monte Carlo inversion of seismic sources in complex media[J]. J Geophys Res-Sol Ea,123(4):2984–2999. doi: 10.1002/2017JB015249

    French S W,Romanowicz B A. 2014. Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography[J]. Geophys J Int,199(3):1303–1327. doi: 10.1093/gji/ggu334

    Fu J S,Ba Z N,Wang F B. 2024. A simulation approach for site-city interaction in basin under oblique incident waves and its applications[J]. Soil Dyn Earthq Eng,177:108407. doi: 10.1016/j.soildyn.2023.108407

    Gatti F,Touhami S,Lopez-Caballero F,Paolucci R,Clouteau D,Fernandes V A,Kham M,Voldoire F. 2018. Broad-band 3-D earthquake simulation at nuclear site by an all-embracing source-to-structure approach[J]. Soil Dyn Earthq Eng,115:263–280. doi: 10.1016/j.soildyn.2018.08.028

    Geng Y H,Qin G L,Wang Y,He W. 2016. The research of space-time coupled spectral element method for acoustic wave equations[J]. Chinese Journal of Acoustics,35(1):29–47.

    Giraldo F X,Taylor M A. 2006. A diagonal-mass-matrix triangular-spectral-element method based on cubature points[J]. J Eng Math,56:307–322.

    Gopalakrishnan S,Chakraborty A,Mahapatra D R. 2008. Spectral Finite Element Method:Wave Propagation,Diagnostics and Control in Anisotropic and Inhomogeneous Structures[M]. London:Springer-Verlag:1−22.

    Gottlieb D,Orszag S A. 1977. Numerical Analysis of Spectral Methods:Theory and Applications[M]. Philadelphia:Society for Industrial and Applied Mathematics:1−167.

    Grasso S,Maugeri M. 2014. Seismic microzonation studies for the city of Ragusa (Italy)[J]. Soil Dyn Earthq Eng,56:86–97. doi: 10.1016/j.soildyn.2013.10.004

    Graves R,Jordan T H,Callaghan S,Deelman E,Field E,Juve G,Kesselman C,Maechling P,Mehta G,Milner K,Okaya D,Small P,Vahi K. 2011. CyberShake:A physics-based seismic hazard model for southern California[J]. Pure Appl Geophys,168:367–381. doi: 10.1007/s00024-010-0161-6

    Graves R,Pitarka A. 2015. Refinements to the Graves and Pitarka (2010) broadband ground‐motion simulation method[J]. Seismol Res Lett,86(1):75–80. doi: 10.1785/0220140101

    Han L,Wang J X,Li H J,Sun G J. 2020. A time-domain spectral element method with C1 continuity for static and dynamic analysis of frame structures[J]. Structures,28:604–613. doi: 10.1016/j.istruc.2020.08.074

    He C H,Wang J T,Zhang C H,Jin F. 2015. Simulation of broadband seismic ground motions at dam canyons by using a deterministic numerical approach[J]. Soil Dyn Earthq Eng,76:136–144. doi: 10.1016/j.soildyn.2014.12.004

    He C H,Wang J T,Zhang C H. 2016. Nonlinear spectral‐element method for 3D seismic‐wave propagation[J]. B Seismol Soc Am,106(3):1074–1087. doi: 10.1785/0120150341

    Hermann V,Käser M,Castro C E. 2011. Non-conforming hybrid meshes for efficient 2-D wave propagation using the discontinuous Galerkin method[J]. Geophys J Int,184(2):746–758. doi: 10.1111/j.1365-246X.2010.04858.x

    Ho L W,Patera A T. 1990. A Legendre spectral element method for simulation of unsteady incompressible viscous free-surface flows[J]. Comput Method Appl M,80:355–366. doi: 10.1016/0045-7825(90)90040-S

    Huang D R,Wang G,Du C Y,Jin F,Feng K W,Chen Z W. 2020. An integrated SEM-Newmark model for physics-based regional coseismic landslide assessment[J]. Soil Dyn Earthq Eng,132:106066. doi: 10.1016/j.soildyn.2020.106066

    Huang D R,Wang G,Du C Y,Jin F. 2021. Seismic amplification of soil ground with spatially varying shear wave velocity using 2D spectral element method[J]. J Earthq Eng,25(14):2834–2849. doi: 10.1080/13632469.2019.1654946

    Infantino M,Mazzieri I,Özcebe A G,Paolucci R,Stupazzini M. 2020. 3D physics‐based numerical simulations of ground motion in Istanbul from earthquakes along the Marmara segment of the north Anatolian fault[J]. B Seismol Soc Am,110(5):2559–2576. doi: 10.1785/0120190235

    Infantino M,Smerzini C,Lin J. 2021. Spatial correlation of broadband ground motions from physics‐based numerical simulations[J]. Earthq Eng Struct D,50(10):2575–2594. doi: 10.1002/eqe.3461

    Karaoğlu H,Romanowicz B. 2018. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method[J]. Geophys J Int,213(3):1536–1558. doi: 10.1093/gji/ggy030

    Karniadakis G,Sherwin S J. 2005. Spectral/hp Element Methods for Computational Fluid Dynamics[M]. New York:Oxford University Press:1−652.

    Käser M,Dumbser M,Puente J,Igel H. 2007. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—III. Viscoelastic attenuation[J]. Geophys J Int,168(1):224–242. doi: 10.1111/j.1365-246X.2006.03193.x

    Käser M,Dumbser M. 2006. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes—I. The two-dimensional isotropic case with external source terms[J]. Geophys J Int,166(2):855–877. doi: 10.1111/j.1365-246X.2006.03051.x

    Käser M,Dumbser M. 2008. A highly accurate discontinuous Galerkin method for complex interfaces between solids and moving fluids[J]. Geophysics,73(3):T23–T35. doi: 10.1190/1.2870081

    Käser M,Hermann V,Puente J. 2008. Quantitative accuracy analysis of the discontinuous Galerkin method for seismic wave propagation[J]. Geophys J Int,173(3):990–999. doi: 10.1111/j.1365-246X.2008.03781.x

    Kato B,Wang G. 2021. Regional seismic responses of shallow basins incorporating site‐city interaction analyses on high‐rise building clusters[J]. Earthq Eng Struct D,50(1):214–236. doi: 10.1002/eqe.3363

    Kato B,Wang G. 2022. Seismic site–city interaction analysis of super-tall buildings surrounding an underground station:A case study in Hong Kong[J]. B Earthq Eng,20(3):1431–1454. doi: 10.1007/s10518-021-01295-7

    Komatitsch D,Barnes C,Tromp J. 2000a. Wave propagation near a fluid-solid interface:A spectral-element approach[J]. Geophysics,65(2):623–631. doi: 10.1190/1.1444758

    Komatitsch D,Barnes C,Tromp J. 2000b. Simulation of anisotropic wave propagation based upon a spectral element method[J]. Geophysics,65(4):1251–1260. doi: 10.1190/1.1444816

    Komatitsch D,Erlebacher G,Göddeke D,Michéa D. 2010. High-order finite-element seismic wave propagation modeling with MPI on a large GPU cluster[J]. J Comput Phys,229(20):7692–7714.

    Komatitsch D,Liu Q,Tromp J,Süss P,Stidham C,Shaw J H. 2004. Simulations of ground motion in the Los Angeles basin based upon the spectral-element method[J]. B Seismol Soc Am,94(1):187–206.

    Komatitsch D,Martin R,Tromp J,Taylor M A,Wingate B A. 2001. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles[J]. J Comput Acoust,9(2):703–718.

    Komatitsch D,Martin R. 2007. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics,72(5):SM155–SM167. doi: 10.1190/1.2757586

    Komatitsch D,Ritsema J,Tromp J. 2002. The spectral-element method,Beowulf computing,and global seismology[J]. Science,298(5599):1737–1742. doi: 10.1126/science.1076024

    Komatitsch D,Tromp J. 1999. Introduction to the spectral element method for three-dimensional seismic wave propagation[J]. Geophys J Int,139(3):806–822. doi: 10.1046/j.1365-246x.1999.00967.x

    Komatitsch D,Tromp J. 2002a. Spectral-element simulations of global seismic wave propagation—I. Validation[J]. Geophys J Int,149(2):390–412. doi: 10.1046/j.1365-246X.2002.01653.x

    Komatitsch D,Tromp J. 2002b. Spectral-element simulations of global seismic wave propagation—II. Three-dimensional models,oceans,rotation and self-gravitation[J]. Geophys J Int,150(1):303–318. doi: 10.1046/j.1365-246X.2002.01716.x

    Komatitsch D,Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation[J]. Geophys J Int,154(1):146–153. doi: 10.1046/j.1365-246X.2003.01950.x

    Komatitsch D,Vilotte J P,Vai R,Castillo-Covarrubias J M,Sánchez-Sesma F J. 1999. The spectral element method for elastic wave equations — Application to 2‐D and 3‐D seismic problems[J]. Int J Numer Meth Eng,45(9):1139–1164. doi: 10.1002/(SICI)1097-0207(19990730)45:9<1139::AID-NME617>3.0.CO;2-T

    Komatitsch D,Vilotte J P. 1998. The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures[J]. B Seismol Soc Am,88(2):368–392. doi: 10.1785/BSSA0880020368

    Komatitsch D,Vilotte J P. 1999. Reply to comment by E. Faccioli and A. Quarteroni on “The spectral element method:An efficient tool to simulate the seismic response of 2D and 3D geological structures,” by D. Komatitsch and J. -P. Vilotte[J]. B Seismol Soc Am, 89 (1):332−334.

    Krishnan S,Ji C,Komatitsch D,Tromp J. 2006. Performance of two 18-story steel moment-frame buildings in southern California during two large simulated San Andreas earthquakes[J]. Earthq Spectra,22(4):1035–1061. doi: 10.1193/1.2360698

    Laurenzano G,Priolo E,Tondi E. 2008. 2D numerical simulations of earthquake ground motion:examples from the Marche Region,Italy[J]. J Seismol,12:395–412. doi: 10.1007/s10950-008-9095-1

    Laurenzano G,Priolo E. 2005. Numerical modeling of the 13 December 1990 M 5.8 east Sicily earthquake at the Catania accelerometric station[J]. B Seismol Soc Am,95(1):241–251. doi: 10.1785/0120030126

    Lee S J,Chen H W,Liu Q,Komatitsch D,Huang B S,Tromp J. 2008. Three-dimensional simulations of seismic-wave propagation in the Taipei basin with realistic topography based upon the spectral-element method[J]. B Seismol Soc Am,98(1):253–264. doi: 10.1785/0120070033

    Lee S J,Komatitsch D,Huang B S,Tromp J. 2009. Effects of topography on seismic-wave propagation:An example from northern Taiwan[J]. B Seismol Soc Am,99(1):314–325. doi: 10.1785/0120080020

    Lee U. 2009. Spectral Element Method in Structural Dynamics[M]. Singapore:John Wiley & Sons (Asia) Pte Ltd:1−448.

    Liang J W,Wu M T,Ba Z N,Liu Y. 2021. A hybrid method for modeling broadband seismic wave propagation in 3D localized regions to incident P,SV,and SH waves[J]. Int J Appl Mech,13(10):2150119. doi: 10.1142/S1758825121501192

    Liu Q F,Yu Y Y,Yin D Y,Zhang X B. 2018. Simulations of strong motion in the Weihe basin during the Wenchuan earthquake by spectral element method[J]. Geophys J Int,215(2):978–995. doi: 10.1093/gji/ggy320

    Liu Q F,Yu Y Y,Zhang X B. 2015. Three-dimensional simulations of strong ground motion in the Shidian basin based upon the spectral-element method[J]. Earthq Eng Eng Vib,14(3):385–398. doi: 10.1007/s11803-015-0031-4

    Liu Q Y,Gu Y J. 2012. Seismic imaging:From classical to adjoint tomography[J]. Tectonophysics,566:31–66.

    Liu Q Y,Polet J,Komatitsch D,Tromp J. 2004. Spectral-element moment tensor inversions for earthquakes in southern California[J]. B Seismol Soc Am,94(5):1748–1761. doi: 10.1785/012004038

    Liu Q Y,Tromp J. 2006. Finite-frequency kernels based on adjoint methods[J]. B Seismol Soc Am,96(6):2383–2397. doi: 10.1785/0120060041

    Liu Q Y,Tromp J. 2008. Finite-frequency sensitivity kernels for global seismic wave propagation based upon adjoint methods[J]. Geophys J Int,174(1):265–286. doi: 10.1111/j.1365-246X.2008.03798.x

    Liu S L,Yang D H,Dong X P,Liu Q C,Zheng Y C. 2017. Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling[J]. Solid Earth,8(5):969–986. doi: 10.5194/se-8-969-2017

    Liu T,Sen M K,Hu T Y,De Basabe J D,Li L. 2012. Dispersion analysis of the spectral element method using a triangular mesh[J]. Wave Motion,49:474–483. doi: 10.1016/j.wavemoti.2012.01.003

    Liu Y S,Teng J W,Lan H Q,Si X,Ma X Y. 2014. A comparative study of finite element and spectral element methods in seismic wavefield modeling[J]. Geophysics,79(2):T91–T104. doi: 10.1190/geo2013-0018.1

    Liu Y S,Teng J W,Xu T,Badal J. 2017. Higher-order triangular spectral element method with optimized cubature points for seismic wavefield modeling[J]. J Comput Phys,336:458–480. doi: 10.1016/j.jcp.2017.01.069

    Lloyd A J,Wiens D A,Zhu H,Tromop J,Nyblade A A,Aster R C,Hansen S E,Dalziel I W D,Wilson T J,Ivins E R,O’Donnell J P. 2020. Seismic structure of the Antarctic upper mantle imaged with adjoint tomography[J]. J Geophys Res-Sol Ea, 125 (3).

    Lu X Z,Tian Y,Wang G,Huang D R. 2018. A numerical coupling scheme for nonlinear time history analysis of buildings on a regional scale considering site‐city interaction effects[J]. Earthq Eng Struct D,47(13):2708–2725. doi: 10.1002/eqe.3108

    Ma H. 1993. A spectral element basin model for the shallow water equations[J]. J Comput Phys,109:133–149. doi: 10.1006/jcph.1993.1205

    Magnoni F,Casarotti E,Komatitsch D,Stefano R D,Ciaccio M G,Tape C,Melini D,Michelini A,Piersanti A,Tromp J. 2022. Adjoint tomography of the Italian lithosphere[J]. Commun Earth Environ,3(1):69. doi: 10.1038/s43247-022-00397-7

    Marfurt K J. 1984. Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[J]. Geophysics,49(5):533–549. doi: 10.1190/1.1441689

    Martin R,Komatitsch D,Gedney S D,Bruthiaux E. 2010. A high-order time and space formulation of the unsplit perfectly matched layer for the seismic wave equation using Auxiliary Differential Equations (ADE-PML)[J]. CMES-Comp Model Eng,56(1):17–40.

    Martin R,Komatitsch D,Gedney S D. 2008. A variational formulation of a stabilized unsplit convolutional perfectly matched layer for the isotropic or anisotropic seismic wave equation[J]. CMES-Comp Model Eng,37(3):274–304.

    Mazzieri I,Stupazzini M,Guidotti R,Smerzini C. 2013. SPEED:SPectral Elements in Elastodynamics with Discontinuous Galerkin:A non‐conforming approach for 3D multi‐scale problems[J]. Int J Numer Meth Eng,95(12):991–1010. doi: 10.1002/nme.4532

    Michéa D,Komatitsch D. 2010. Accelerating a three-dimensional finite-difference wave propagation code using GPU graphics cards[J]. Geophys J Int,182(1):389–402.

    Moczo P,Kristek J,Halada L. 2000. 3D fourth-order staggered-grid finite-difference schemes:Stability and grid dispersion[J]. B Seismol Soc Am,90(3):587–603. doi: 10.1785/0119990119

    Morency C,Tromp J. 2008. Spectral-element simulations of wave propagation in porous media[J]. Geophys J Int,175(1):301–345. doi: 10.1111/j.1365-246X.2008.03907.x

    Mulder W A,Zhebel E,Minisini S. 2014. Time-stepping stability of continuous and discontinuous finite-element methods for 3-D wave propagation[J]. Geophys J Int,196(2):1123–1133. doi: 10.1093/gji/ggt446

    Mulder W A. 1999. Spurious modes in finite-element discretizations of the wave equation may not be all that bad[J]. Appl Numer Math,30(4):425–445. doi: 10.1016/S0168-9274(98)00078-6

    Mulder W A. 2001. Higher-order mass-lumped finite elements for the wave equation[J]. J Comput Acoust,9(2):671–680. doi: 10.1142/S0218396X0100067X

    Mulder W A. 2013. New triangular mass-lumped finite elements of degree six for wave propagation[J]. Prog Electromagn Res,141:671–692. doi: 10.2528/PIER13051308

    Mullen R,Belytschko T. 1982. Dispersion analysis of finite element semidiscretizations of the two‐dimensional wave equation[J]. Int J Numer Meth Eng,18(1):11–29. doi: 10.1002/nme.1620180103

    Oliveira S P,Seriani G. 2011. Effect of element distortion on the numerical dispersion of spectral element methods[J]. Commun Comput Phys,9(4):937–958. doi: 10.4208/cicp.071109.080710a

    Ostachowicz W,Kudela P,Krawczuk M,Zak A. 2012. Guided Waves in Structures for SHM:The Time-Domain Spectral Element Method[M]. London:John Wiley & Sons:1−334.

    Padovani E,Priolo E,Seriani G. 1994. Low and high order finite element method:experience in seismic modeling[J]. J Comput Acoust,2(4):371–422. doi: 10.1142/S0218396X94000233

    Paolucci R,Evangelista L,Mazzieri I,Schiappapietra E. 2016. The 3D numerical simulation of near-source ground motion during the Marsica earthquake,central Italy,100 years later[J]. Soil Dyn Earthq Eng,91:39–52. doi: 10.1016/j.soildyn.2016.09.023

    Paolucci R,Gatti F,Infantino M,Smerzini C,Özcebe A G,Stupazzini M. 2018. Broadband ground motions from 3D physics‐based numerical simulations using artificial neural networks[J]. B Seismol Soc Am,108(3A):1272–1286. doi: 10.1785/0120170293

    Paolucci R,Mazzieri I,Smerzini C. 2015. Anatomy of strong ground motion:near-source records and three-dimensional physics-based numerical simulations of the MW6.0 2012 May 29 Po Plain earthquake,Italy[J]. Geophys J Int,203(3):2001–2020. doi: 10.1093/gji/ggv405

    Paolucci R,Smerzini C,Vanini M. 2021. BB‐SPEEDset:A validated dataset of broadband near‐source earthquake ground motions from 3D physics‐based numerical simulations[J]. B Seismol Soc Am,111(5):2527–2545. doi: 10.1785/0120210089

    Pasquetti R,Rapetti F. 2004. Spectral element methods on triangles and quadrilaterals:comparisons and applications[J]. J Comput Phys,198(1):349–362. doi: 10.1016/j.jcp.2004.01.010

    Patera A T. 1984. A spectral element method for fluid dynamics:Laminar flow in a channel expansion[J]. J Comput Phys,54:468–488. doi: 10.1016/0021-9991(84)90128-1

    Pelties C,Käser M,Hermann V,Castro C E. 2010. Regular versus irregular meshing for complicated models and their effect on synthetic seismograms[J]. Geophys J Int,183(2):1031–1051. doi: 10.1111/j.1365-246X.2010.04777.x

    Pelties C,Puente J,Ampuero J P,Brietzke G B,Käser M. 2012. Three‐dimensional dynamic rupture simulation with a high‐order discontinuous Galerkin method on unstructured tetrahedral meshes[J]. J Geophys Res-Sol Ea,117:B02309.

    Pilz M,Parolai S,Stupazzini M,Paolucci R,Zschau J. 2011. Modelling basin effects on earthquake ground motion in the Santiago de Chile basin by a spectral element code[J]. Geophys J Int,187(2):929–945. doi: 10.1111/j.1365-246X.2011.05183.x

    Pozrikidis C. 2014. Introduction to Finite and Spectral Element Methods Using MATLAB[M]. 2nd ed. USA:University of Massachusetts,CRC Press:1−793.

    Priolo E,Carcione J M,Seriani G. 1994. Numerical simulation of interface waves by high‐order spectral modeling techniques[J]. J Acoust Soc Am,95(2):681–693. doi: 10.1121/1.408428

    Priolo E,Seriani G. 1991. A numerical investigation of Chebyshev SEM for acoustic wave propagation[C]//Proceedings of 13th World Congress on Computation and Applied Mathematics,Ireland:Trinity College Dublin:551−556.

    Priolo E. 1999. 2-D spectral element simulations of destructive ground shaking in Catania (Italy)[J]. J Seismol,3:289–309. doi: 10.1023/A:1009838325266

    Priolo E. 2001. Earthquake ground motion simulation through the 2-D spectral element method[J]. J Comput Acoust,9(4):1561–1581. doi: 10.1142/S0218396X01001522

    Puente J,Ampuero J P,Käser M. 2009. Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method[J]. J Geophys Res-Sol Ea,114:B10302.

    Puente J,Dumbser M,Käser M,Igel H. 2008. Discontinuous Galerkin methods for wave propagation in poroelastic media[J]. Geophysics,73(5):T77–T97. doi: 10.1190/1.2965027

    Puente J,Käser M,Dumbser M,Igel H. 2007. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-IV. Anisotropy[J]. Geophys J Int,169(3):1210–1228. doi: 10.1111/j.1365-246X.2007.03381.x

    Rønquist E M,Patera A T. 1987. A Legendre spectral element method for the Stefan problem[J]. Int J Numer Meth Eng,24(12):2273–2299.

    Sawade L,Beller S,Lei W,Tromp J. 2022. Global centroid moment tensor solutions in a heterogeneous earth:the CMT3D catalogue[J]. Geophys J Int,231(3):1727–1738. doi: 10.1093/gji/ggac280

    Schuberth B. 2003. The Spectral Element Method for Seismic Wave Propagation:Theory,Implementation and Comparison to Finite Difference Methods [D]. München:Ludwig Maximilians Universität:1−163.

    Seriani G,Oliveira S P. 2007. Optimal blended spectral-element operators for acoustic wave modeling[J]. Geophysics,72(5):SM95–SM106. doi: 10.1190/1.2750715

    Seriani G,Oliveira S P. 2008a. Dispersion analysis of spectral element methods for elastic wave propagation[J]. Wave Motion,45(6):729–744. doi: 10.1016/j.wavemoti.2007.11.007

    Seriani G,Oliveira S P. 2008b. DFT modal analysis of spectral element methods for acoustic wave propagation[J]. J Comput Acoust,16(4):531–561. doi: 10.1142/S0218396X08003774

    Seriani G,Priolo E,Carcione J,Padovani E,Geofisica O. 1992. High-order spectral element method for elastic wave modeling[C]// Seg Technical Program Expanded Abstracts 1992. Society of Exploration Geophysicists:1285−1288.

    Seriani G,Priolo E. 1991. High-order spectral element method for acoustic wave modeling[C]//Expanded Abstracts of the Society of Exploration Geophysicists,61st International Meeting of the SEG,Houston,Texas:1561−1564.

    Seriani G,Priolo E. 1994. Spectral element method for acoustic wave simulation in heterogeneous media[J]. Finite Elem Anal Des,16:337–348. doi: 10.1016/0168-874X(94)90076-0

    Seriani G,Su C. 2012. Wave propagation modeling in highly heterogeneous media by a poly-grid Chebyshev spectral element method[J]. J Comput Acoust,20(2):1240004. doi: 10.1142/S0218396X12400048

    Seriani G. 1997. A parallel spectral element method for acoustic wave modeling[J]. J Comput Acoust,5(1):53–69. doi: 10.1142/S0218396X97000058

    Seriani G. 1998. 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor[J]. Comput Method Appl M,164:235–247. doi: 10.1016/S0045-7825(98)00057-7

    Seriani G. 2004. Double-grid Chebyshev spectral elements for acoustic wave modeling[J]. Wave Motion,39(4):351–360. doi: 10.1016/j.wavemoti.2003.12.008

    Sherwin S J,Karniadakis G E. 1995. A triangular spectral element method; applications to the incompressible Navier-Stokes equations[J]. Comput Method Appl M, 123 (1−4):189−229.

    Smerzini C,Amendola C,Paolucci R,Bazrafshan A. 2024. Engineering validation of BB-SPEEDset,a data set of near-source physics-based simulated accelerograms[J]. Earthq Spectra,40(1):420–445. doi: 10.1177/87552930231206766

    Smerzini C,Paolucci R,Stupazzini M. 2011. Comparison of 3D,2D and 1D numerical approaches to predict long period earthquake ground motion in the Gubbio plain,Central Italy[J]. B Earthq Eng,9:2007–2029. doi: 10.1007/s10518-011-9289-8

    Smerzini C,Pitilakis K,Hashemi K. 2017. Evaluation of earthquake ground motion and site effects in the Thessaloniki urban area by 3D finite-fault numerical simulations[J]. B Earthq Eng,15:787–812. doi: 10.1007/s10518-016-9977-5

    Smerzini C,Pitilakis K. 2018. Seismic risk assessment at urban scale from 3D physics-based numerical modeling:the case of Thessaloniki[J]. B Earthq Eng,16:2609–2631. doi: 10.1007/s10518-017-0287-3

    Soto V,Sáez E,Magna-Verdugo C. 2020. Numerical modeling of 3D site-city effects including partially embedded buildings using spectral element methods. Application to the case of Viña del Mar city,Chile[J]. Eng Struct,223:111188. doi: 10.1016/j.engstruct.2020.111188

    Stich D,Martín R,Morales J. 2010. Moment tensor inversion for Iberia–Maghreb earthquakes 2005–2008[J]. Tectonophysics,483:390–398. doi: 10.1016/j.tecto.2009.11.006

    Stupazzini M,Infantino M,Allmann A,Paolucci R. 2020. Physics‐based probabilistic seismic hazard and loss assessment in large urban areas:A simplified application to Istanbul[J]. Earthq Eng Struct D,50(1):99–115.

    Stupazzini M,Paolucci R,Igel H. 2009. Near-fault earthquake ground-motion simulation in the Grenoble valley by a high-performance spectral element code[J]. B Seismol Soc Am,99(1):286–301. doi: 10.1785/0120080274

    Su C,Seriani G. 2023. Poly-grid spectral element modeling for wave propagation in complex elastic media[J]. J Theor Comput Acous,31(1):2350003. doi: 10.1142/S2591728523500032

    Sun P G,Huang D R. 2023. Regional-scale assessment of earthquake-induced slope displacement considering uncertainties in subsurface soils and hydrogeological condition[J]. Soil Dyn Earthq Eng,164:107593. doi: 10.1016/j.soildyn.2022.107593

    Tape C,Liu Q,Maggi A,Tromp J. 2009. Adjoint tomography of the southern California crust[J]. Science,325(5943):988–992. doi: 10.1126/science.1175298

    Tape C,Liu Q,Maggi A,Tromp J. 2010. Seismic tomography of the southern California crust based on spectral-element and adjoint methods[J]. Geophys J Int,180(1):433–462. doi: 10.1111/j.1365-246X.2009.04429.x

    Tape C,Liu Q,Tromp J. 2007. Finite‐frequency tomography using adjoint methods — Methodology and examples using membrane surface waves[J]. Geophys J Int,168(3):1105–1129. doi: 10.1111/j.1365-246X.2006.03191.x

    Taylor M A,Wingate B A,Vincent R E. 2000. An algorithm for computing Fekete points in the triangle[J]. SIAM J Numer Anal,38(5):1707–1720. doi: 10.1137/S0036142998337247

    Tian Y,Chen S Y,Liu S M,Lu X Z. 2023. Influence of tall buildings on city-scale seismic response analysis:A case study of Shanghai CBD[J]. Soil Dyn Earthq Eng,173:108063. doi: 10.1016/j.soildyn.2023.108063

    Tian Y,Lu X Z,Huang D R,Wang T. 2022. SCI effects under complex terrains:Shaking table tests and numerical simulation[J]. J Earthq Eng,27(5):1237–1260.

    Tian Y,Sun C J,Lu X Z,Huang Y L. 2020. Quantitative analysis of site-city interaction effects on regional seismic damage of buildings[J]. J Earthq Eng,26(8):4365–4385.

    Trefethen L N. 2000. Spectral Methods in MATLAB[M]. Philadelphia:Society for Industrial and Applied Mathematics:1−160.

    Tromp J,Komatitsch D,Liu Q. 2008. Spectral-element and adjoint methods in seismology[J]. Commun Comput Phys,3(1):1–32.

    Tromp J,Tape C,Liu Q. 2005. Seismic tomography,adjoint methods,time reversal and banana-doughnut kernels[J]. Geophys J Int,160(1):195–216.

    Virieux J. 1986. P-SV wave propagation in heterogeneous media:Velocity-stress finite-difference method[J]. Geophysics,51(4):889–901. doi: 10.1190/1.1442147

    Vosse van de F N,Minev P D. 1996. Spectral Element Methods :Theory and Applications[R]. EUT report. Netherlands:Eindhoven University of Technology:1−117.

    Wang G,Du C Y,Huang D R,Jin F,Koo R C H,Kwan J S H. 2018. Parametric models for 3D topographic amplification of ground motions considering subsurface soils[J]. Soil Dyn Earthq Eng,115:41–54. doi: 10.1016/j.soildyn.2018.07.018

    Wang J X,Li H J,Sun G J,Han L. 2022a. Free vibration analysis of rectangular thin plates with corner and inner cutouts using C1 Chebyshev spectral element method[J]. Thin Wall Struct,181:110031. doi: 10.1016/j.tws.2022.110031

    Wang J X,Li H J,Xing H J. 2022b. A lumped mass Chebyshev spectral element method and its application to structural dynamic problems[J]. Earthq Eng Eng Vib,21(3):843–859. doi: 10.1007/s11803-022-2117-0

    Wang X C,Wang J T,Zhang C H. 2022. A broadband kinematic source inversion method considering realistic Earth models and its application to the 1992 Landers earthquake[J]. J Geophys Res-Sol Ea,127(3):e2021JB023216. doi: 10.1029/2021JB023216

    Wang X C,Wang J T,Zhang C H. 2023. Deterministic full-scenario analysis for maximum credible earthquake hazards[J]. Nat Commun,14(1):6600. doi: 10.1038/s41467-023-42410-3

    Wang X C,Wang J T,Zhang L,He C H. 2021a. Broadband ground-motion simulations by coupling regional velocity structures with the geophysical information of specific sites[J]. Soil Dyn Earthq Eng,145:106695. doi: 10.1016/j.soildyn.2021.106695

    Wang X C,Wang J T,Zhang L,Li S,Zhang C H. 2021b. A multidimension source model for generating broadband ground motions with deterministic 3D numerical simulations[J]. B Seismol Soc Am,111(2):989–1013. doi: 10.1785/0120200221

    Wang X C,Wang J T. 2023. A physics‐based spectral matching (PBSM) method for generating fully site‐related ground motions[J]. Earthq Eng Struct D,52(9):2812–2829. doi: 10.1002/eqe.3897

    Wu M T,Ba Z N,Liang J W. 2022. A procedure for 3D simulation of seismic wave propagation considering source‐path‐site effects:Theory,verification and application[J]. Earthq Eng Struct D,51(12):2925–2955. doi: 10.1002/eqe.3708

    Xie Z N,Komatitsch D,Martin R,Matzen R. 2014. Improved forward wave propagation and adjoint-based sensitivity kernel calculations using a numerically stable finite-element PML[J]. Geophys J Int,198(3):1714–1747. doi: 10.1093/gji/ggu219

    Xie Z N,Matzen R,Cristini P,Komatitsch D,Marin R. 2016. A perfectly matched layer for fluid-solid problems:Application to ocean-acoustics simulations with solid ocean bottoms[J]. J Acoust Soc Am,140(1):165–175. doi: 10.1121/1.4954736

    Xie Z N,Zheng Y L,Cristini P,Zhang X B. 2023. Multi-axial unsplit frequency-shifted perfectly matched layer for displacement-based anisotropic wave simulation in infinite domain[J]. Earthq Eng Eng Vib,22(2):407–421. doi: 10.1007/s11803-023-2170-3

    Xing H J,Li X J,Li H J,Liu A W. 2021a. Spectral-element formulation of multi-transmitting formula and its accuracy and stability in 1D and 2D seismic wave modeling[J]. Soil Dyn Earthq Eng,140:1–15.

    Xing H J,Li X J,Li H J,Xie Z N,Chen S L,Zhou Z H. 2021b. The theory and new unified formulas of displacement-type local absorbing boundary conditions[J]. Bull Seismol Soc Am,111(2):801–824. doi: 10.1785/0120200155

    Yu Y Y,Ding H P,Liu Q F. 2017. Three-dimensional simulations of strong ground motion in the Sichuan basin during the Wenchuan earthquake[J]. B Earthq Eng,15:4661–4679. doi: 10.1007/s10518-017-0154-2

    Yu Y Y,Ding H P,Zhang X B. 2021. Simulations of ground motions under plane wave incidence in 2D complex site based on the spectral element method (SEM) and multi-transmitting formula (MTF):SH problem[J]. J Seismol,25:967–985. doi: 10.1007/s10950-021-09995-y

    Yu Y Y,Ding H P,Zhang X B. 2024. Formulation and performance of multi-transmitting formula with spectral element method in 2D ground motion simulations under plane-wave incidence:SV wave problem[J]. J Earthq Eng,28(7):1837–1860. doi: 10.1080/13632469.2023.2268748

    Zhang L,Wang J T,Xu Y J,He C H,Zhang C H. 2020. A procedure for 3D seismic simulation from rupture to structures by coupling SEM and FEM[J]. B Seismol Soc Am,110(3):1134–1148. doi: 10.1785/0120190289

    Zhang M Z,Zhang L,Wang X C,Su W,Qiu Y X,Wang J T,Zhang C H. 2023. A framework for seismic response analysis of dams using numerical source‐to‐structure simulation[J]. Earthq Eng Struct D,52(3):593–608. doi: 10.1002/eqe.3774

    Zhou H,Chen X F. 2010. A new technique to synthesize seismography with more flexibility:the Legendre spectral element method with overlapped elements[J]. Pure Appl Geophys,167:1365–1376. doi: 10.1007/s00024-010-0106-0

    Zhou H,Jiang H. 2015. A new time-marching scheme that suppresses spurious oscillations in the dynamic rupture problem of the spectral element method:the weighted velocity Newmark scheme[J]. Geophys J Int,203(2):927–942. doi: 10.1093/gji/ggv341

    Zhou H,Li J T,Chen X F. 2020. Establishment of a seismic topographic effect prediction model in the Lushan MS7.0 earthquake area[J]. Geophys J Int,221(1):273–288. doi: 10.1093/gji/ggaa003

    Zhu C Y,Qin G L,Zhang J Z. 2011. Implicit Chebyshev spectral element method for acoustics wave equations[J]. Finite Elem Anal Des,47(2):184–194. doi: 10.1016/j.finel.2010.09.004

    Zhu H J,Bozdağ E,Tromp J. 2015. Seismic structure of the European upper mantle based on adjoint tomography[J]. Geophys J Int,201(1):18–52. doi: 10.1093/gji/ggu492

    Zhu H J,Komatitsch D,Tromp J. 2017. Radial anisotropy of the North American upper mantle based on adjoint tomography with USArray[J]. Geophys J Int,211(1):349–377. doi: 10.1093/gji/ggx305

    Zienkiewicz O C,Taylor R L,Zhu J Z. 2013. The Finite Element Method:Its Basis and Fundamentals[M]. 7th ed. UK:Butterworth-Heinemann,Elsevier:257−460.

图(1)  /  表(2)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  14
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-18
  • 修回日期:  2025-01-02
  • 录用日期:  2025-01-16
  • 网络出版日期:  2025-03-24

目录

    /

    返回文章
    返回