基于混沌理论、变分模态分解和长短期记忆网络的地磁变化预测方法

于文强, 李厚朴, 刘敏, 宋立忠

于文强,李厚朴,刘敏,宋立忠. 2024. 基于混沌理论、变分模态分解和长短期记忆网络的地磁变化预测方法. 地震学报,46(1):92−105. DOI: 10.11939/jass.20220132
引用本文: 于文强,李厚朴,刘敏,宋立忠. 2024. 基于混沌理论、变分模态分解和长短期记忆网络的地磁变化预测方法. 地震学报,46(1):92−105. DOI: 10.11939/jass.20220132
Yu W Q,Li H P,Liu M,Song L Z. 2024. A geomagnetic variation prediction method based on chaotic VMD-LSTM neural network. Acta Seismologica Sinica46(1):92−105. DOI: 10.11939/jass.20220132
Citation: Yu W Q,Li H P,Liu M,Song L Z. 2024. A geomagnetic variation prediction method based on chaotic VMD-LSTM neural network. Acta Seismologica Sinica46(1):92−105. DOI: 10.11939/jass.20220132

基于混沌理论、变分模态分解和长短期记忆网络的地磁变化预测方法

基金项目: 国家优秀青年科学基金(42122025)和国家自然科学基金(42074074)联合资助
详细信息
    作者简介:

    于文强,在读硕士研究生,主要从事地磁场方面的研究,e-mail:yuwq1997@163.com

    通讯作者:

    李厚朴,博士,教授,主要从事海洋重磁测量方面的研究,email:lihoupu1985@126.com

  • 中图分类号: P318.2

A geomagnetic variation prediction method based on chaotic VMD-LSTM neural network

  • 摘要:

    针对地磁变化场的非平稳性、非线性以及物理模型难以预测的特点,提出了一种改进的长短期记忆网络预测方法并进行了验证。首先应用变分模态分解方法对地磁台站数据进行去噪,再根据地磁变化的混沌特性引入混沌理论对样本集进行优化,最终以长短期记忆网络预测地磁变化并对改进前后的方法进行了对比。结果显示,优化方法的预测效果较稳定,平均绝对误差小于2 nT,相关指数R2超过0.8,预测值与实测值的拟合度较高,有效预测时长可达2.5天,且在中国大陆的泛用性较好。

    Abstract:

    In view of the nonstationarity and nonlinearity of geomagnetic variation field and the difficulty of physical model prediction, an improved LSTM (long short-term memory) neural network prediction method is proposed and verified by tests. Firstly, the variational mode decomposition (VMD) method is used to denoise the geomagnetic data, and then the chaos theory is introduced to optimize the sample set according to the chaotic characteristics of geomagnetic variation. Finally, the LSTM network is used to predict geomagnetic variation. The results show that the prediction of the optimized method is relatively stable, mean absolute error is less than 2 nT, correlative coefficient R2 is larger than 0.8, the predicted value is well consistent with the measured value, and the effective prediction time can reach 2.5 days, and it has good universality in Chinese Mainland.

  • 图  1   长短期记忆网络的单元状态

    h表示隐藏状态,C表示单元状态,x表示单元输入,ft为遗忘门,it为输入门,ot为输出门

    Figure  1.   LSTM unit state

    h represents hidden state,C represents unitstate,x represents input,ft is forget gate,it is input gate,ot is otput gate

    图  2   基于广州肇庆站数据使用中心频率法求K

    Figure  2.   Calculation of K based on data at Zhaoqing station in Guangzhou by using center frequency method

    图  3   各模态的样本熵

    Figure  3.   Sample entropy of each mode

    图  4   不同分解层数下残余分量与去噪信号的相关系数

    Figure  4.   Correlation coefficient between residual components and denoised signals with different decomposition layers

    图  5   2020年3月6日肇庆站地磁数据的VMD去噪结果

    Figure  5.   Denoising results of geomagnetic data at Zhaoqing station on March 6,2020 by VMD

    图  6   自相关系数法确定时间延迟(a)和伪最近邻域法确定嵌入维数(b)

    Figure  6.   Autocorrelation coefficient method for determining time delay (a) and false nearest neighbor method for determining embedding dimension (b)

    图  7   六个模型的预测结果

    (a) 单一LSTM;(b) VMD-LSTM;(c) 混沌优化LSTM;(d) 混沌VMD-LSTM;(e) 自回归差分移动平均模型;(f) 灰色模型

    Figure  7.   Prediction results of six models

    (a) Single LSTM network;(b) VMD-LSTM;(c) Chaotic optimized LSTM network; (d) Chaotic VMD-LSTM;(e) Auto-regressive integrated moving average model;(f) Gray model

    图  8   各台站基于混沌VMD-LSTM方法的预测结果

    Figure  8.   Prediction results of each station based on the chaotic VMD-LSTM method

    表  1   地磁变化预测评估

    Table  1   Evaluation of geomagnetic variation prediction

    预测方法 MAE/nT RMSE/nT MAPE R2 Ad_R2 RA
    单一长短期记忆(LSTM) 6.945 0 9.592 8 0.154 0 0.622 7 0.837 4 0.984 6
    VMD-LSTM 6.815 9 9.118 5 0.151 0 0.459 5 0.853 8 0.984 9
    混沌优化LSTM 2.944 3 4.752 9 0.006 5 0.614 8 0.612 6 0.993 4
    混沌VMD-LSTM 1.936 2 2.876 8 0.004 0 0.854 3 0.853 4 0.995 7
    自回归差分移动平均模型 13.655 9 16.298 9 0.030 1 0.346 6 0.349 3 0.969 9
    灰色模型 12.197 3 14.872 0 0.026 9 0.271 8 0.274 0 0.973 1
    注: MAE为平均绝对误差,RMSE为均方根误差,MAPE为平均绝对百分比误差,R2为相关指数,Ad_R2为调整后的相关系数,RA为相对准确率,下同。
    下载: 导出CSV

    表  2   各台站预测评估误差

    Table  2   Evaluation error of prediction results for several stations

    台站MAE/nTRMSE/nTMAPER2Ad_R2RA
    拉萨站(LAT)1.705 12.714 70.002 40.802 20.801 00.997 5
    漠河站(MHT)1.256 31.628 60.009 90.465 60.462 40.990 0
    郫县站(PXT)1.499 92.184 00.005 30.905 20.904 70.994 7
    十三陵站(SSL)1.309 71.952 50.002 10.820 50.819 50.997 9
    下载: 导出CSV

    表  3   模型的预测时效

    Table  3   Model prediction timeliness

    预测时长/dAd_R2
    10.89
    20.83
    2.50.80
    30.72
    70.60
    下载: 导出CSV
  • 程文凯,杜劲松,陈超,艾萨·伊斯马伊力. 2021. 基于XGBoost机器学习的地磁日变重构方法研究[J]. 地震学报,43(1):100–112.

    Cheng W K,Du J S,Chen C,Yisimayili A. 2021. Reconstruction method for diurnal variations of the geomagnetic field by XGBoost machine learning[J]. Acta Seismologica Sinica,43(1):100–112 (in Chinese).

    韩敏. 2007. 混沌时间序列预测理论与方法[M]. 北京:中国水利水电出版社:79−92.

    Han M. 2007. Prediction Theory and Method of Chaotic Time Series[M]. Beijing:China Water Resources and Hydropower Press:79−92 (in Chinese).

    李松,刘力军. 2017. 混沌时间序列智能预测方法及其应用[M]. 北京:科学出版社:17−27.

    Li S,Liu L J. 2017. Intelligent Forecasting of Chaotic Time Series and Its Application[M]. Beijing:Science Press:17−27 (in Chinese).

    刘博,王明烁,李永,陈洪丽,李建强. 2021. 深度学习在时空序列预测中的应用综述[J]. 北京工业大学学报,47(8):925–941.

    Liu B,Wang M S,Li Y,Chen H L,Li J Q. 2021. Deep learning for spatio-temporal sequence forecasting:A survey[J]. Journal of Beijing University of Technology,47(8):925–941 (in Chinese).

    卢兆兴,吕志峰,李婷,张金生,姚垚. 2021. 基于BP神经网络的地磁变化场预测研究[J]. 大地测量与地球动力学,41(3):229–233. doi: 10.14075/j.jgg.2021.03.002

    Lu Z X,Lü Z F,Li T,Zhang J S,Yao Y. 2021. Forecasting of the variable geomagnetic field based on BP neural network[J]. Journal of Geodesy and Geodynamics, 41 (3):229−233 (in Chinese).

    牛超,李夕海,魏一苇,刘代志. 2021. 区域地磁变化场分析与建模关键技术研究[M]. 西安:西安电子科技大学出版社:1−2.

    Niu C,Li X H,Wei Y W,Liu D Z. 2021. Research on Key Technology of Regional Geomagnetic Variation Field Analysis and Modeling[M]. Xi’an:Xidian University Press:1−2 (in Chinese).

    齐玮,王秀芳,李夕海,刘代志. 2010. 基于统计建模的地磁匹配特征量选择[J]. 地球物理学进展,25(1):324–330.

    Qi W,Wang X F,Li X H,Liu D Z. 2010. Selection of characteristic components for geomagnetic matching based on statistical modeling[J]. Progress in Geophysics,25(1):324–330 (in Chinese).

    乔玉坤,王仕成,张琪. 2007. 地磁匹配特征量的选择[J]. 地震地磁观测与研究,28(1):42–47. doi: 10.3969/j.issn.1003-3246.2007.01.007

    Qiao Y K,Wang S C,Zhang Q. 2007. Selection of characteristic variable of geomagnetism for matching[J]. Seismological and Geomagnetic Observation and Research,28(1):42–47 (in Chinese).

    陶凯,吴定会. 2021. 基于VMD-JAYA-LSSVM的短期风电功率预测[J]. 控制工程, 28 (6):1143−1149.

    Tao K,Wu D H. 2021. Short-term wind power prediction based on VMD-JAYA-LSSVM[J]. Control Engineering of China, 28 (6):1143−1149 (in Chinese).

    王赤,陈金波,王水. 1995. 地球变化磁场的分形和混沌特征[J]. 地球物理学报,38(1):16–24.

    Wang C,Chen J B,Wang S. Fractal and chaotic features for varying component of the Earth’s magnetic field[J]. Chinese Journal of Geophysics, 38 (1):16−24 (in Chinese).

    王鹏飞,丁兆敏,林鹏飞,黄刚. 2015. 时间滑动相关方法在SST可预报性及可信计算时间研究中的应用[J]. 气候与环境研究,20(3):245–256.

    Wang P F,Ding Z M,Lin P F,Huang G. 2015. Application of the sliding temporal correlation approach to the studies of predictability and reliable computation time of sea surface temperature.[J]. Climatic and Environmental Research,20(3):245−256 (in Chinese).

    徐文耀. 2003. 地磁学[M]. 北京:地震出版社:221.

    Xu W Y. 2003. Geomagnetism[M]. Beijing:Seismological Press:221 (in Chinese).

    郑小霞,周国旺,任浩翰,符杨. 2017. 基于变分模态分解和排列熵的滚动轴承故障诊断[J]. 振动与冲击,36(22):22–28.

    Zheng X X,Zhou G W,Ren H H,Fu Y. 2017. A rolling bearing fault diagnosis method based on variational mode decomposition and permutation entropy[J]. Journal of Vibration and Shock,36(22):22–28 (in Chinese).

    Dragomiretskiy K,Zosso D. 2014. Variational mode decomposition[J]. IEEE Trans Signal Process,62(3):531–544. doi: 10.1109/TSP.2013.2288675

    Hochreiter S,Schmidhuber J. 1997. Long short-term memory[J]. Neural computation,9(8):1735–1780 (in Chinese). doi: 10.1162/neco.1997.9.8.1735

    Lorenz E N. 1963. Deterministic nonperiodic flow[J]. Journal of Atmospheric Sciences,20(2):130–141 (in Chinese). doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2

    Moghadam R A,Yaghoubi M. 2015. Interval emotional neural network for prediction of Kp,AE and Dst geomagnetic activity indices[C]//2015 International Congress on Technology. Mashhad,Iran:IEEE:325−331. doi: 10.1109/ICTCK.2015.7582690.

    Sutcliffe P R. 1999. The development of a regional geomagnetic daily variation model using neural networks[J]. Annales Geophys,18(1):120–128.

    Vastano J A,Kostelich E J. 1986. Comparison of algorithms for determining Lyapunov exponents from experimental data[C]//Dimensions and Entropies in Chaotic Systems. Springer Series in Synergetics,vol 32. Berlin,Heidelberg:Springer:100−107.

    Xie H B,He W X,Liu H. 2008. Measuring time series regularity using nonlinear similarity-based sample entropy[J]. Phy Lett A, 372 (48):7140−7146.

    Yi S H,Huang S Q,Li X H,Qi W,He Y L,Han S Q,Rong C J,Li Z G. 2010. Modeling and forecasting of the variable geomagnetic field at multiple time scales[C]//IEEE 10th International Conference on Signal Processing Proceedings. Beijing:IEEE:1335−1338. doi: 10.1109/ICOSP.2010.5657017.

  • 期刊类型引用(8)

    1. 郑毅权,雷军. 腾冲地区中小震群横波分裂到时差变化研究. 北京大学学报(自然科学版). 2023(03): 375-387 . 百度学术
    2. 黄春梅,吴朋,李大虎,王宇航,林向东. 2019年四川长宁M_S6.0地震序列S波分裂变化特征. 地震学报. 2021(03): 303-320+260 . 本站查看
    3. 李莹,高原. 青藏高原东南缘地质构造基本形态与地震各向异性基本特征. 地震. 2021(04): 15-45 . 百度学术
    4. 黄春梅,吴朋,苏金蓉,王宇航,魏娅玲,李大虎,颜利君. 2017年8月九寨沟M_S7.0地震序列S波分裂特征. 华北地震科学. 2020(01): 29-37 . 百度学术
    5. 陈安国,高原,石玉涛. 龙门山断裂带域上地壳各向异性及其变化. 地球物理学报. 2019(08): 2959-2981 . 百度学术
    6. 吴朋,秦敏,赵翠萍,苏金蓉,华卫,王宇航. 2014年5月云南盈江M_S6.1地震序列横波分裂讨论. 地震. 2018(04): 172-180 . 百度学术
    7. Lijun Chang,Zhifeng Ding,Chunyong Wang. Upper crustal anisotropy observed around the Longmenshan fault in the 2013 M_S7.0 Lushan earthquake region. Earthquake Science. 2018(04): 187-198 . 必应学术
    8. 吴朋,黄春梅,苏金蓉,王宇航. 2013年8月德钦—得荣M_S 5.9地震序列S波分裂. 地震地磁观测与研究. 2017(03): 41-46 . 百度学术

    其他类型引用(3)

图(8)  /  表(3)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  29
  • PDF下载量:  40
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-07-19
  • 修回日期:  2022-10-19
  • 网络出版日期:  2023-09-27
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回