地震层析成象的-变换
THE △- TRANSFORM IN SEISMIC TOMOGRAPHY
-
摘要: 由Radon变换出发给出了地震走时问题的——变换.定义模型坐标(x,z)与震源位置()和射线斜率()间的线性关系为x=+z.文中给出了-正反变换的理论公式,并分析了-变换与富氏变换的关系。理论表明,连续函数的-变换可得到走时反演问题的唯一解。 在地震学非完全层析成象中,欲提高图象质量必须压制假频和提高分辨.作者对重建图象的分辨进行了详细讨论,最后通过数值模拟讨论了观测系统和滤波处理的影响。Abstract: Based on Radon transform, the △- transform for seismic travel-time inversion is proposed in this paper. We define the linear relationship of model coordinates (x, z), source position △ and seismic ray slope by an equation x = △ + z. The theoretical equations of forward and inverse △- transforms are given, then therelationship between the △- and Fourier transforms is discussed. It is shown in theory that a unique solution can be derived with continuous △- transform.For an incomplete tomographic image reconstruction in seismology, in order to avoid the artificiality and to increase the resolution so as to improve the image quality, the authors give a detailed discussion about the resolution of reconstructed image. Finaly, the influnce of observational system and filter approach upon the reconstruction is discussed through numerical computation.
-
-
[1] Scudder, H.J., 1978. Introduction to computer aided tomography. Proc. IEEE,66,628——637.
[2] Aki, k., and P.G., Richards, 1980. Quantitative Seismology: Theory and Dlethods, II, W.H.Freeman and Co..
[3] Worthington, M.H. ,1984. An introduction to geophysical to gography. First Break, 2,11,20——25.
[4] Gel'fand LM., M.I. Graev and N. Ya., 1966. Vilenkin Generalised Functions, 5, Integral geometry and representation theory, Academic Press, New York.
[5] Clayton, R., and G. McMechan, 1981. Inversion of refraction data by wave field continuation. Geophysics, 46, 860——868.[1] Scudder, H.J., 1978. Introduction to computer aided tomography. Proc. IEEE,66,628——637.
[2] Aki, k., and P.G., Richards, 1980. Quantitative Seismology: Theory and Dlethods, II, W.H.Freeman and Co..
[3] Worthington, M.H. ,1984. An introduction to geophysical to gography. First Break, 2,11,20——25.
[4] Gel'fand LM., M.I. Graev and N. Ya., 1966. Vilenkin Generalised Functions, 5, Integral geometry and representation theory, Academic Press, New York.
[5] Clayton, R., and G. McMechan, 1981. Inversion of refraction data by wave field continuation. Geophysics, 46, 860——868.
计量
- 文章访问数: 1412
- HTML全文浏览量: 20
- PDF下载量: 133