Seismogenic fault segmentation of Tangshan earthquake sequence derived from focal mechanism solutions
-
摘要: 使用唐山地区2002年1月—2015年11月ML≥2.5地震的255个震源机制解, 采用构造应力场均匀性的分段方法对唐山地震序列的发震断层进行分段. 在已有唐山地区震源机制解分区特征的基础上, 给出了5个参考应力张量, 并通过差异显著性的z值检验计算将唐山地震序列的发震断层分为宁河、 唐山、 滦县和卢龙等4个子段, 进而分别对4个子段的应力场进行反演. 结果显示: 4个子段的最大主压应力方向均呈近EW向, 且唐山、 宁河和卢龙子段的应力场均表现出较大的拉张分量; 唐山、 宁河子段的最佳应力张量与唐山主震对唐山断裂带两端点所产生的引张应力场的作用方式一致. 此外, 唐山子段的应力场符合基于接收函数给出的上地幔物质隆升模型, 滦县子段走滑型的应力状态反映了该区的共轭构造运动, 卢龙子段的最佳应力张量为正断兼右旋走滑. 从当前唐山地震序列发震断层分段的应力场特征可以推断, 现今唐山地区的地震活动具有继承性, 主要受区域构造应力场和该区深、 浅共存的断裂构造体系控制.Abstract: Based on the method of tectonic stress field homogeneity, this paper determined the segmentation of the seismogenic fault of Tangshan earthquake sequence by using the focal mechanisms of earthquake with ML≥2.5 occurred in Tangshan area from January of 2002 to November of 2015. According to the previous subarea results related to focal mechanisms in Tangshan area, this paper obtained five reference stress tensors, and the seismogenic fault of Tang-shan earthquake sequence was divided into four segments, i.e., Ninghe, Tang-shan, Luanxian and Lulong, by the significant difference analysis of z-test of cumulative misfit. The inversion for stress fields of the four segments shows the orientation of maximum principal stress axes is nearly in EW, and the stress filed of the Tangshan, Ninghe and Lulong segments showed a greater tensile component. The best stress tensors of Tangshan and Ninghe segments are consistent with the tensile stress field caused by the Tangshan main shock's pulling the northeastern and southwestern ends of Tangshan fault zone. The uplift model of upper mantle material derived from receiver function may also conform to the stress field of Tangshan segment. The strike-slip stress field of Luanxian segment is closely related to the conjugated structure in this area. The best stress tensor of Lulong segment is normal fault with right-lateral strike-slip. From the present characteristics of stress field for the seismogenic fault segmentation of Tangshan earthquake sequence, it is concluded that the seismicity in Tangshan area has inherited the development mode of Tangshan earthquake sequence, and mainly can be controlled by the regional tectonic stress field and the coexistence of deep and shallow faults.
-
-
图 1 唐山地区地质构造和2002年1月—2015年11月ML≥2.5地震的震源机制解分布
F1: 丰台—野鸡坨断裂; F2: 滦县—乐亭断裂; F3: 宁河—昌黎断裂; F4: 蓟运河断裂; F5: 唐山断裂带; F6: 卢龙断裂; F7: 汉沽断裂; F8: 沧东断裂; F9: 丰台—丰南断裂
Figure 1. Tectonic settings and focal mechanism solutions of ML≥2.5 earthquakes occurred in Tangshan area from January of 2002 to November of 2015
Black lines represent faults,the compressed areas of focal mechanisms calculated in this study are filled with gray and red. The focal mechanisms with black compressed areas(No. 31,145,219 earth-quakes)is centroid-moment tensor solutions from Global CMT Project,and those with red compressed areas indicate the boundary points among the subfaults of the seismogenic fault of Tangshan earthquake sequence. F1: Fengtai-Yejituo fault; F2: Luanxian-Laoting fault; F3: Ninghe-Changli fault; F4: Jiyunhe fault; F5: Tangshan fault zone; F6: Lulong fault; F7: Hangu fault; F8: Cangdong fault; F9: Fengtai-Fengnan fault
图 2 累积残差曲线(a)及其相应的z检验绝对值曲线(b)
垂直虚线为分段界限,图(b)中的水平线表示z检验显著水平为0.05的临界值1.96
Figure 2. Cumulative misfit curves(a)and the corresponding absolute values of z-test of cumulative misfit(b)
The vertical dashed lines indicate the boundary among the four segments,and the horizontal line indicates the critical value 1.96 of z-test at the significance level of 0.05 in Fig.(b)
表 1 唐山地震序列发震断层分段的参考应力张量反演结果
Table 1 Inversion of the reference stress tensors for the five segments of the seismogenic fault of Tangshan earthquake sequence
序号 子段 震源机制解个数 σ1 σ2 σ3 R 拟合残差/° 方位角/° 倾角/° 方位角/° 倾角/° 方位角/° 倾角/° 1 宁河段 13 107 17 228 59 358 21 0.70 8.6 2 唐山断裂带南段 21 284 30 132 56 22 13 0.50 9.0 3 唐山断裂带北段 133 267 86 79 4 169 1 0.70 10.3 4 滦县段 70 92 46 262 43 356 5 0.50 8.8 5 卢龙断裂段 18 103 32 248 53 3 17 0.40 7.9 注: R表示相对应力大小,R=(σ2-σ1)/(σ3-σ1). 表 2 基于应力场均匀性得到的唐山地震序列发震断层4个子段的应力张量反演结果
Table 2 The stress inversion result of the new four segments of the seismogenic fault of Tangshan earthquake sequence derived from stress field homogeneity
序号 子段 震源机制解个数 σ1 σ2 σ3 R 拟合残差/° 方位角/° 倾角/° 方位角/° 倾角/° 方位角/° 倾角/° 1 宁河 31 261 57 76 33 167 2 0.45 8.5 2 唐山 130 79 89 244 1 339 0 0.80 10.1 唐山断裂带北段 93 268 23 121 64 3 13 0.50 8.6 隐伏断裂 37 87 85 256 5 347 1 0.60 7.8 3 滦县 58 96 13 263 76 5 3 0.50 8.3 4 卢龙 36 103 59 265 30 360 8 0.60 7.5 -
刁桂苓, 于利民, 李钦祖, 王绍晋. 1995. 唐山和澜沧地震序列震源区应力场的对比分析[J]. 地震学报, 17(3): 305-311. http://www.dzxb.org/Magazine/Show?id=27781 Diao G L, Yu L M, Li Q Z, Wang S J. 1995. Comparison of the stress field between Tangshan and Lancang earthquake sequence[J]. Acta Seismologica Sinica, 17(3): 305-311 (in Chinese). http://www.dzxb.org/Magazine/Show?id=27781
顾功叙, 林庭煌, 时振梁. 1983. 中国地震目录(公元1970—1979年)[M]. 北京: 地震出版社: 110-190. Gu G X, Lin T H, Shi Z L. 1983. Catalogue of Chinese Earthquakes (AD 1970-1979)[M]. Beijing: Seismological Press: 110-190 (in Chinese).
郭慧, 江娃利, 谢新生. 2011a. 钻孔与探槽揭示1976年河北唐山MS7.8地震发震构造晚第四纪强震活动[J]. 中国科学: 地球科学, 41(7): 1009-1028. doi: 10.1007/s11430-011-4218-x Guo H, Jiang W L, Xie X S. 2011a. Late-Quaternary strong earthquakes on the seismogenic fault of the 1976 MS7.8 Tangshan earthquake, Hebei, as revealed by drilling and trenching[J]. Science China Earth Sciences, 54(11): 1696-1715. doi: 10.1007/s11430-011-4218-x
郭慧, 江娃利, 谢新生. 2011b. 对1976 年河北唐山MS7.8地震地表破裂带展布及位移特征的新认识[J]. 地震地质, 33(3): 506-524. Guo H, Jiang W L, Xie X S. 2011b. New evidence for the distribution of surface rupture zone of the 1976 MS7.8 Tang-shan earthquake[J]. Seismology and Geology, 33(3): 506-524 (in Chinese).
国家地震局《一九七六年唐山地震》编辑组. 1982. 一九七六年唐山地震[M]. 北京: 地震出版社: 1-32. Editorial Group of The Tangshan Earthquake of 1976, State Seismological Bureau. 1982. Tangshan Earthquake of 1976[M]. Beijing: Seismological Press: 1-32 (in Chinese).
虢顺民, 李志义, 程绍平, 陈献程, 陈孝德, 杨主恩, 李如成. 1977. 唐山地震区域构造背景和发震模式的讨论[J]. 地质科学, 12(4): 305-321. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197704000.htm Guo S M, Li Z Y, Cheng S P, Chen X C, Chen X D, Yang Z E, Li R C. 1977. Discussion on the regional structural background and the seismogenic model of the Tangshan earthquake[J]. Scientia Geologica Sinica, 12(4): 305-321 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZKX197704000.htm
李钦祖, 刁桂苓, 戴英华. 1983. 唐山地震序列的应力释放调整过程[J]. 地球物理学报, 26(3): 224-236. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198303002.htm Li Q Z, Diao G L, Dai Y H. 1983. The stress releases and adjustment process during Tangshan earthquake sequence[J]. Chinese Journal of Geophysics, 26(3): 224-236 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198303002.htm
李瑞沙, 崔效锋, 刁桂苓, 张红艳. 2008. 华北北部地区现今应力场时空变化特征研究[J]. 地震学报, 30(6): 570-580. http://www.dzxb.org/Magazine/Show?id=27077 Li R S, Cui X F, Diao G L, Zhang H Y. 2008. Temporal and spatial variation of the present crustal stress in northern part of North China[J]. Acta Seismologica Sinica, 30(6): 570-580 (in Chinese). http://www.dzxb.org/Magazine/Show?id=27077
李轶群, 王健. 2008. 唐山余震区中小地震震源机制解分区特征的初步研究[J]. 中国地震, 24(2): 150-158. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200802007.htm Li Y Q, Wang J. 2008. The preliminary study on focal mechanism of small and moderate earthquakes in divided zones around Tangshan[J]. Earthquake Research in China, 24(2): 150-158 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD200802007.htm
梁尚鸿, 李幼铭, 束沛镒, 朱碚定. 1984. 利用区域地震台网P、 S振幅比资料测定小震震源参数[J]. 地球物理学报, 27(3): 249-257. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198403004.htm Liang S H, Li Y M, Shu P Y, Zhu P D. 1984. On the determining of source parameters of small earthquakes by using amplitude ratios of
and from regional network observations[J]. Chinese Journal of Geophysics, 27(3): 249-257 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX198403004.htm 刘桂萍, 傅征祥. 2000. 1976年7月28日唐山7.8级地震触发的区域地震活动和静应力场变化[J]. 地震学报, 22(1): 17-26. http://www.dzxb.org/Magazine/Show?id=26827 Liu G P, Fu Z X. 2000. The seismicity and static stress change of the trigger area of 1976 Tangshan earthquake[J]. Acta Seismologica Sinica, 22(1): 17-26 (in Chinese). http://www.dzxb.org/Magazine/Show?id=26827
刘亢, 曲国胜, 房立华, 李红光. 2015. 唐山古冶、 滦县地区中小地震活动与构造关系研究[J]. 地震, 35(2): 111-120. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201502012.htm Liu K, Qu G S, Fang L H, Li H G. 2015. Relationship between tectonics and small to moderate earthquakes in Guye and Luanxian area, Hebei Province[J]. Earthquake, 35(2): 111-120 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN201502012.htm
刘启元, 王峻, 陈九辉, 李顺成, 郭彪. 2007. 1976 年唐山大地震的孕震环境: 密集地震台阵观测得到的结果[J]. 地学前缘, 14(6): 205-213. doi: 10.1016/S1872-5791(08)60012-3 Liu Q Y, Wang J, Chen J H, Li S C, Guo B. 2007. Seismogenic tectonic environment of 1976 great Tangshan earthquake: Results given by dense seismic array observations[J]. Earth Science Frontiers, 14(6): 205-213 (in Chinese). doi: 10.1016/S1872-5791(08)60012-3
马瑾, 张渤涛, 袁淑荣. 1980. 唐山地震与地震危险区[J]. 地震地质, 2(2): 43-54. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198002005.htm Ma J, Zhang B T, Yuan S R. 1980. Tangshan earthquake and the earthquake risk area[J]. Seismology and Geology, 2(2): 43-54 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ198002005.htm
盛书中, 万永革. 2012. 由构造应力场研究汶川地震断层的分段性[J]. 地震学报, 34(6): 741-753. http://www.dzxb.org/Magazine/Show?id=28797 Sheng S Z, Wan Y G. 2012. Segmentation of the Wenchuan earthquake fault derived from tectonic stress analysis[J]. Acta Seismologica Sinica, 34(6): 741-753 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28797
盛书中, 万永革, 徐志国, 卜玉菲, 武晔, 李迎秋. 2013. 由地震释放的地震矩叠加推导平均应力场[J]. 地震地质, 35(1): 92-100. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201301010.htm Sheng S Z, Wan Y G, Xu Z G, Bu Y F, Wu Y, Li Y Q. 2013. Mean stress field inferred from the total seismic moment released by earthquakes[J]. Seismology and Geology, 35(1): 92-100 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ201301010.htm
万永革, 沈正康, 刁桂苓, 王福昌, 胡新亮, 盛书中. 2008. 利用小震分布和区域应力场确定大震断层面参数方法及其在唐山地震序列中的应用[J]. 地球物理学报, 51(3): 793-804. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200803021.htm Wan Y G, Shen Z K, Diao G L, Wang F C, Hu X L, Sheng S Z. 2008. An algorithm of fault parameter determination using distribution of small earthquakes and parameters of regional stress field and its application to Tangshan earthquake sequence[J]. Chinese Journal of Geophysics, 51(3): 793-804 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX200803021.htm
万永革, 沈正康, 曾跃华, 盛书中, 徐晓枫. 2008. 唐山地震序列应力场触发的粘弹性力学模型研究[J]. 地震学报, 30(6): 581-593. http://www.dzxb.org/Magazine/Show?id=27078 Wan Y G, Shen Z K, Zeng Y H, Sheng S Z, Xu X F. 2008. Study on visco-elastic stress triggering model of the 1976 Tangshan earthquake sequence[J]. Acta Seismologica Sinica, 30(6): 581-593 (in Chinese). http://www.dzxb.org/Magazine/Show?id=27078
许忠淮. 1985. 用滑动方向拟合法反演唐山余震区的平均应力场[J]. 地震学报, 7(4): 349-362. http://www.dzxb.org/Magazine/Show?id=28125 Xu Z H. 1985. Mean stress field in Tangshan aftershock area obtained from focal mechanism data by fitting slip directions[J]. Acta Seismologica Sinica, 7(4): 349-362 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28125
许忠淮, 汪素云, 高阿甲, 郭瑛. 1994. 我国部分早期震源机制解的重新测定[J]. 地震地磁观测与研究, 15(5): 1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ405.000.htm Xu Z H, Wang S Y, Gao A J, Guo Y. 1994. Redetermination of some early focal mechanism solutions of Chinese earthquakes[J].Seismological and Geomagnetic Observation and Research, 15(5): 1-9 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZGJ405.000.htm
尤惠川, 徐锡伟, 吴建平, 何正勤. 2002. 唐山地震深浅构造关系研究[J]. 地震地质, 24(4): 571-582. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200204012.htm You H C, Xu X W, Wu J P, He Z Q. 2002. Study on the relationship between shallow and deep structures in the 1976 Tangshan earthquake area[J]. Seismology and Geology, 24(4): 571-582 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200204012.htm
张宏志, 刁桂苓, 陈棋福, 胡新亮, 王晓山, 张跃刚. 2008. 1976年唐山7.8级地震震区现今地震震源机制分析[J]. 地震研究, 31(1): 1-6. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200801002.htm Zhang H Z, Diao G L, Chen Q F, Hu X L, Wang X S, Zhang Y G. 2008. Focal mechanism analysis of the recent earthquakes in Tangshan seismic region of M7.8 in 1976[J]. Journal of Seismological Research, 31(1): 1-6 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200801002.htm
张四昌, 刁桂苓. 1992. 唐山地震序列的构造过程[J]. 中国地震, 8(2): 73-80. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199202008.htm Zhang S C, Diao G L. 1992. The tectonic process of the Tangshan earthquake sequence[J]. Earthquake Research in China, 8(2): 73-80 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD199202008.htm
Butler R, Stewart G S, Kanamori H. 1979. The July 27, 1976 Tangshan, China earthquake: A complex sequence of intraplate events[J]. Bull Seismol Soc Am, 69(1): 207-220. http://resolver.caltech.edu/CaltechAUTHORS:20140812-132214591
Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res, 86(B4): 2825-2852. doi: 10.1029/JB086iB04p02825.
Ekström G, Nettles M, Dziewonski A M. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13017 earthquakes[J]. Phys Earth Planet Inter, 200/201: 1-9. doi: 10.1016/j.pepi.2012.04.002.
Gephart J W, Forsyth D W. 1984. An improved method for determining the regional stress tensor using earthquake focal mechanism data: Application to the San Fernando earthquake sequence[J]. J Geophys Res, 89(B11): 9305-9320. doi: 10.1029/JB089iB11p09305.
Huang B S, Yeh Y T. 1997. The fault ruptures of the 1976 Tangshan earthquake sequence inferred from coseismic crustal deformation[J]. Bull Seismol Soc Am, 87(4): 1046-1057. http://cn.bing.com/academic/profile?id=1958270168&encoded=0&v=paper_preview&mkt=zh-cn
Kagan Y Y. 2007. Simplified algorithms for calculating double-couple rotation[J]. Geophys J Int, 171(1): 411-418. doi: 10.1111/gji.2007.171.issue-1
Klein F W. 1978. Hypocenter Location Program HYPOINVERSE Part I: Users Guide to Versions 1, 2, 3 and 4[R]. Menlo Park: U.S. Geological Survey Open-File Rept: 78-694.
Lu Z, Wyss M. 1996. Segmentation of the Aleutian plate boundary derived from stress direction estimates based on fault plane solutions[J]. J Geophys Res, 101(B1): 803-816. doi: 10.1029/95JB03036
Lu Z, Wyss M, Pulpan H. 1997. Details of stress directions in the Alaska subduction zone from fault plane solutions[J]. J Geophys Res, 102(B3): 5385-5402. doi: 10.1029/96JB03666
Meyer S L. 1975. Data Analysis for Scientists and Engineers[M]. New York: John Wiley & Sons: 235.
Nábělek J, Chen W P, Ye H. 1987. The Tangshan earthquake sequence and its implications for the evolution of the North China basin[J]. J Geophys Res, 92(B12): 12615-12628. doi: 10.1029/JB092iB12p12615.
Ratchkovski N A. 2003. Change in stress directions along the central Denali fault, Alaska after the 2002 earthquake sequence[J]. Geophys Res Lett, 30(19): 2017. doi: 10.1029/2003GL017905.
Robinson R, Zhou S Y. 2005. Stress interactions within the Tangshan, China, earthquake sequence of 1976[J].Bull Seismol Soc Am, 95(6): 2501-2505. doi: 10.1785/0120050091
Shao X Z, Zhang J R, Liu Q Y, Zhang S Y. 1986. The common features of deep structures in some large earthquake areas of the North China plain and their implication for earthquake site prediction[J]. J Phys Earth, 34(Suppl): 223-239. http://cn.bing.com/academic/profile?id=1974224637&encoded=0&v=paper_preview&mkt=zh-cn
Shedlock K M, Baranowski J, Xiao W W, Hu X L. 1987. The Tangshan aftershock sequence[J]. J Geophys Res, 92(B3): 2791-2803. doi: 10.1029/JB092iB03p02791
Wyss M, Lu Z. 1995. Plate boundary segmentation by stress directions: Southern San Andreas fault, California[J]. Geophys Res Lett, 22(5): 547-550. doi: 10.1029/95GL00074
Xie X B, Yao Z X. 1991. The faulting process of Tangshan earthquake inverted simultaneously from the teleseismic waveforms and geodesic deformation data[J]. Phys Earth Planet Inter, 66(3/4): 265-277. http://cn.bing.com/academic/profile?id=2037369320&encoded=0&v=paper_preview&mkt=zh-cn
Xu Z H, Wang S Y. 1986. A possible change in stress field orientation due to the 1976 Tangshan earthquake[J]. Pure Appl Geophys, 124(4/5): 941-955. http://cn.bing.com/academic/profile?id=2034810598&encoded=0&v=paper_preview&mkt=zh-cn
Zoback M L. 1992. First- and second-order patterns of stress in the lithosphere: The World Stress Map Project[J]. J Geophys Res, 97(B8): 11703-11728. doi: 10.1029/92JB00132.
-
期刊类型引用(18)
1. 刘燕翔,王晓山,吕国军,茅远哲,边庆凯,荣伟健. 滦县—卢龙断裂的活动特征及其地震地质意义. 地震地磁观测与研究. 2024(01): 13-22 . 百度学术
2. 张海洋. 2019年丰南4.5级地震前后岩石圈磁场水平矢量动态演化特征. 中国地震. 2024(02): 426-435 . 百度学术
3. 潘婷婷,胡雪平,任天翔,徐博. 纵横波时差耦合作用下地铁车站地震响应分析. 地质力学学报. 2022(04): 596-604 . 百度学术
4. 张苏祥,盛书中,席彪,房立华,吕坚,王甘娇,张潇. 基于改进的DBSCAN算法自动识别断层方法研究及其在唐山地区的应用. 地震地质. 2022(06): 1615-1633 . 百度学术
5. 张海洋,赵慧琴,李博. 2021年滦州M_S 4.3地震地磁场同震异常变化分布与断裂构造的关系. 地震地磁观测与研究. 2022(06): 41-49 . 百度学术
6. 刘燕翔,王妍,李金,符泽宇,荣伟健,杨永旺,路彤. 2019年唐山M_L 4.9地震与1976年唐山7.8级地震的相关性分析. 地震地磁观测与研究. 2021(01): 42-47 . 百度学术
7. 丁宁,谢瑜,陈长云,王生文,刘芳彤. 基于构造物理模拟实验的隐伏断层跨断层场地监测效果分析——以宁河场地为例. 大地测量与地球动力学. 2021(08): 810-815 . 百度学术
8. 王宁,杨春利,王亚玲,王莉婵,李冬圣,蔡玲玲. 2020年7月12日唐山M_S5.1地震前后视应力变化. 华北地震科学. 2021(03): 99-104 . 百度学术
9. 王亚玲,蔡玲玲,李冬圣,王莉婵,赵英萍,王晓山. 2020年7月12日河北唐山M_S5.1地震发震构造及唐山断裂带三维模型. 华北地震科学. 2021(03): 83-91 . 百度学术
10. 刘德强,王朝景,李博,张海洋,云萌,毛丰龙. 河北唐山M_S5.1地震岩石圈磁场D分量异常分布和应力的关系. 华北地震科学. 2021(04): 75-79 . 百度学术
11. 唐杰,李楠,张素欣,盛艳蕊,丁志华. 河北丰南井水位大幅下降异常分析. 地下水. 2021(05): 58-60+73 . 百度学术
12. 王晓山,冯向东,赵英萍. 京津冀地区地壳应力场特征. 地震研究. 2020(04): 610-619 . 百度学术
13. 盛艳蕊,张子广,丁志华,赵建明,荣伟健,张志相. 唐山断裂带土壤气地球化学特征分析. 震灾防御技术. 2020(02): 452-462 . 百度学术
14. 解滔,王同利,肖武军,胡毅涛,李然,卢军. 2020年7月12日唐山M_S5.1地震前通州台井下地电阻率变化. 中国地震. 2020(03): 375-382 . 百度学术
15. 杨帆,盛书中,万永革,王晓山,刘兆才,李瑶. 网格内不满足均匀性假设对应力场反演结果的影响——以喜马拉雅东构造结及其周边地区应力场研究为例. 地球物理学进展. 2019(02): 479-488 . 百度学术
16. 丰成君,戚帮申,王晓山,张鹏,孙明乾,孟静,谭成轩,陈群策. 基于原地应力实测数据探讨华北典型强震区断裂活动危险性及其对雄安新区的影响. 地学前缘. 2019(04): 170-190 . 百度学术
17. 郭蕾,宫猛,王晓山,王想,王亚茹. 2016年6月23日河北尚义4.0级地震发震背景. 地震地磁观测与研究. 2017(04): 26-31 . 百度学术
18. 张素欣,王晓山,陈婷,宫猛,单连君. 唐山老震区40年地震时空演化特征分析. 华北地震科学. 2017(01): 32-37 . 百度学术
其他类型引用(5)