A possible mechanism of Omori-Utsu’s law through an example of the great Tangshan earthquake
-
摘要: 为了探讨大森-宇津定律的物理机制, 本文在余震区等效黏度远低于其外部, 且构造应力场在整个余震活动时间间隔内基本保持不变的假设条件下, 提出了一个开尔文黏弹性地震震源体概念模型. 该模型可用于模拟主震后断层蠕变和震源区应力调整触发的余震序列以及蠕变停止后余震终结、 介质恢复到弹性状态、 断层重新闭锁和积累下一次地震的整个过程. 有限元方法可用来计算非均匀黏弹性地震震源体模型中主震和每次余震所引起的应力场及其随时间的演化过程. 在此基础上, 采用开尔文黏弹性地震震源体概念模型和有限元方法模拟了1976年唐山MS7.8地震余震序列. 结果表明: 经验的大森-宇津定律可以用开尔文黏弹性震源体模型来解释, 这意味着余震衰减的频度取决于蠕变的速率; 余震序列持续时间受控于震源体的黏度, 即黏度越大, 蠕变时间越长, 余震持续的时间也就越长.
-
关键词:
- 大森-宇津定律 /
- 开尔文地震震源体模型 /
- 有限元方法 /
- 唐山大地震
Abstract: This paper proposes a conceptual model of earthquake source body with Kelvin viscoelastic property to investigate the physical mechanism of Omori-Utsu’s law, supposing that tectonic stress field after main shock does not change with time and equivalent viscosity in the aftershock region is much lower than that of its outside in the period of total aftershock activity. This model can simulate aftershock sequence induced by post-seismic creep and stress readjustment, and the whole process including creep stopping, materials recovering to its elastic state, and faulting turning to stick state for next earthquake. Finite element method is used to calculate stress field evolution caused by a main shock and its aftershocks in the model with heterogeneous material properties. Further- more, the model and the method are used to simulate decay of the aftershock frequency of the 1976 MS7.8 Tangshan earthquake. The results show that the mechanism of Omori-Utsu’s law may be attributed to the stress changes caused by the creep of the fault and earthquake source body, which implies that aftershock frequency depends on the creep rate and decay time of the aftershocks is controlled by the equivalent viscosity. The lager the viscosity is, the longer the creep time or the aftershocks last. -
-
图 1 开尔文黏弹性震源体概念模型
(a)材料模型和边界条件;(b)主震震源区局部放大图 图中DWE和DNS分别代表东西方向和南北方向的距离; 滚筒表示切向自由滑动而法向位移为零. 震源体是由3种材料组成,其材料力学性质分别用红色、 黄色和绿色代表. 红色区域表示主震震源区(包括主震断层和破坏区),其中白色长线表示断层核,黑色短线表示震前小破裂(前震); 蓝色表示震源体外的原岩区
Figure 1. Conceptual model of earthquake source body with Kelvin viscoelasticity
(a)Material properties and boundary conditions of the model;(b)Partial enlarged drawing of the main shock source region DWE and DNS are the distances in the N--S and E--W directions,respectively. The roll boundary denotes sliding in the tangential direction and no displacement in normal direction,respectively. The earthquake source body is composed of three regions with different material properties marked by the red,yellow and green. The red rectangular denotes the mainshock source region including mainshock fault and damaged zone,in which the white long line and black short lines mark the mainshock fault core and pre-seismic cracks(foreshocks); the blue marks the host rock region
图 2 有限元模拟得到的主震后地震触发因子C的时空分布图
(a)主震后第1个月;(b)主震后第2个月;(c)主震后第3个月;(d)主震后第4个月; (e)主震后第6个月;(f)主震后第9个月;(g)主震后第36个月;(h)主震后第40个月模型尺寸为200 km×200 km. 白色区域表示地震触发因子C≥1,余震发生; 红色区域表示临近库仑破裂; 蓝色区域表示地震触发因子C=0,意味着之前已发生过余震
Figure 2. Temporal and spatial distribution of earthquake triggering factor C after the mainshock obtained by finite element modeling
(a)In the first month;(b)In the second month;(c)In the third month;(d)In the fourth month; (e)In the sixth month;(f)In the ninth month;(g)In the 36th month;(h)In the 40th month The region scale is 200 km×200 km. The white color denotes C≥1 implies aftershock occurrence; the red represents closing to Coulomb failure; the blue represents C=0 implies aftershock in the past
图 3 1976年MS7.8唐山大地震之后6年的实际余震(MS>4.0)的时空分布图①
(a)第1年内;(b)第2年内;(c)第3年内;(d)第4年内;(e)第5年内;(f)第6年内 图中八角星为唐山大地震主震,圆圈表示其余震
Figure 3. Temporal and spatial distribution of aftershocks(MS>4.0)for the 1976 MS7.8 Tangshan earthquake
(a)In the first year;(b)In the second year;(c)In the third year;(d)In the fourth year;(e)In the fifth year;(f)In the sixth year Star denotes the Tangshan main shock,and the circles denote its aftershocks
-
蔡永恩, 何涛, 王仁. 1999. 1976年唐山地震震源动力过程的数值模拟[J]. 地震学报, 21(5): 469-477. http://www.dzxb.org/Magazine/Show?id=27416 Cai Y E, He T, Wang R. 1999. Numerical simulation of dynamic process of the 1976 Tangshan earthquake[J]. Acta Seismologica Sinica, 21(5): 469-477 (in Chinese). http://www.dzxb.org/Magazine/Show?id=27416
杨挺青. 1990. 粘弹性力学[M]. 武汉: 华中理工大学出版社: 24-28. Yang T Q. 1990. Mechanics of Viscoelasticity[M]. Wuhan: Central China University of Science and Technology Press: 24-28 (in Chinese).
Audet P, Bostock M G, Christensen N I, Peacock S M. 2009. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing[J]. Nature, 457(7225): 76-78. doi: 10.1038/nature07650.
Båth M. 1965. Lateral inhomogeneities of the upper mantle[J]. Tectonophysics, 2(6): 483-514. doi: 10.1016/0040-1951(65)90003-X
Bürgmann R, Dresen G. 2008. Rheology of the lower crust and upper mantle: Evidence from rock mechanics, geodesy, and field observations[J]. Annu Rev Earth Planet Sci, 36: 531-567. doi: 10.1146/annurev.earth.36.031207.124326
Caine J S, Forster C B. 1999. Fault zone architecture and fluid flow: Insights from field data and numerical modeling[G]//Faults and Subsurface Fluid Flow in the Shallow Crust. Washington DC: American Geophysical Union, 113: 101-127. http://geology.usgs.gov/postdoc/opps/2016/S18%20Glen.htm
Chang W L, Smith R B, Puskas C M. 2013. Effects of lithospheric viscoelastic relaxation on the contemporary deformation following the 1959 MW7.3 Hebgen Lake, Montana, earthquake and other areas of the intermountain seismic belt[J]. Geochem Geophys Geosyst, 14(1): 1-17. doi: 10.1029/2012GC004424.
Chester F M, Evans J P, Biegel R L. 1993. Internal structure and weakening mechanisms of the San Andreas fault[J]. J Geophys Res, 98(B1): 771-786. doi: 10.1029/92JB01866
Deng J, Gurnis M, Kanamori H, Hauksson E. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake[J]. Science, 282(5394): 1689-1692. doi: 10.1126/science.282.5394.1689
Dieterich J H. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. J Geophys Res, 99(B2): 2601-2618. doi: 10.1029/93JB02581
Faulkner D R, Mitchell T M, Healy D, Heap M J. 2006. Slip on ‘weak’ faults by the rotation of regional stress in the fracture damage zone[J]. Nature, 444(7121): 922-925. doi: 10.1038/nature05353.
Flesch L M, Holt W E, Haines A J, Shentu B M. 2000. Dynamics of the Pacific-North American Plate boundary in the western United States[J]. Science, 287(5454): 834-836. doi: 10.1126/science.287.5454.834.
Freed A M, Lin J. 1998. Time-dependent changes in failure stress following thrust earthquakes[J]. J Geophys Res, 103(B10): 24393-24409. doi: 10.1029/98JB01764
Freed A M, Lin J. 2001. Delayed triggering of the 1999 Hector Mine earthquake by viscoelastic stress transfer[J]. Nature, 411(6834): 180-183. doi: 10.1038/35075548
Goddard J V, Evans J P. 1995. Chemical changes and fluid-rock interaction in faults of crystalline thrust sheets, northwestern Wyoming, USA[J]. J Struct Geol, 17(4): 533-547. doi: 10.1016/0191-8141(94)00068-B
Goodman R E. 1989. Introduction to Rock Mechanics[M]. 2nd Edition. New York: John Wiley & Sons Inc: 19-53.
Gudmundsson A. 2004. Effects of Young’s modulus on fault displacement[J]. Compt Rend Geosci,336(1): 85-92. doi: 10.1016/j.crte.2003.09.018
Gutenberg B, Richter C F. 1954. Seismicity of the Earth and Associated Phenomena[M]. 2nd Edition. Princeton, NJ: Princeton University Press: 17-19.
Hu C B, Zhou Y J, Cai Y E. 2009a. A new finite element model in studying earthquake triggering and continuous evolution of stress field[J]. Science China Earth Science, 52(7): 994-1004. doi: 10.1007/s11430-009-0082-3
Hu C B, Zhou Y J, Cai Y E, Wang C Y. 2009b. Study of earthquake triggering in a heterogeneous crust using a new finite element model[J]. Seismol Res Lett, 80(5): 795-803. http://cn.bing.com/academic/profile?id=2099063903&encoded=0&v=paper_preview&mkt=zh-cn
Hu C B, Cai Y E, Wang Z M. 2012. Effects of large historical earthquakes, viscous relaxation, and tectonic loading on the 2008 Wenchuan earthquake[J]. J Geophys Res, 117: B06410. doi: 10.1029/2011JB009046.
Hu C B, Cai Y E, Liu M, Wang Z M. 2013. Aftershocks due to pro perty variations in the fault zone: A mechanical model[J]. Tectonophysics, 588: 179-188. doi: 10.1016/j.tecto.2012.12.013.
Hu Y, Wang K, He J, Klotz J, Khazaradze G. 2004. Three-dimensional viscoelastic finite element model for postseismic deformation of the great 1960 Chile earthquake[J]. J Geophys Res, 109(B12): B12403. doi: 10.1029/2004JB003163
Li Q S, Liu M. 2006. Geometrical impact of the San Andreas fault on stress and seismicity in California[J]. Geophys Res Lett, 33(8): L08302. doi: 10.1029/2005GL025661.
Li Q S, Liu M, Zhang H. 2009. A 3-D viscoelastoplastic model for simulating long-term slip on non-planar faults[J]. Geophys J Int, 176(1): 293-306. doi: 10.1111/gji.2008.176.issue-1
Li Y G, Vidale J E, Day S M, Oglesby D D, The SCEC Field Working Team. 2002. Study of the 1999 M7.1 Hector Mine, California, earthquake fault plane by trapped waves[J]. Bull Seismol Soc Am, 92(4): 1318-1332.
Marsan D. 2006. Can coseismic stress variability suppress seismicity shadows? Insight from a rate-and-state friction model[J]. J Geophys Res, 111(B6): B06305. doi: 10.1029/2005JB004060.
Masterlark T. 2003. Finite element model predictions of static deformation from dislocation sources in a subduction zone: Sensitivities to homogeneous, isotropic, Poisson-solid, and half-space assumptions[J]. J Geophys Res, 108(B11): 2540. doi: 10.1029/2002JB002296.
Ohnaka M. 2000. A physical scaling relation between the size of an earthquake and its nucleation zone size[J]. Pure Appl Geophys, 157(11): 2259-2282. doi: 10.1007/PL00001084
Okada Y. 1992. Internal deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am, 92(2): 1018-1040. http://cn.bing.com/academic/profile?id=2130014760&encoded=0&v=paper_preview&mkt=zh-cn
Omori F. 1894. On the aftershocks of earthquakes[J]. J Coll Sci Imper Univ Tokyo, 7: 111-120.
Richter C F. 1958. Elementary Seismology[M]. San Francisco: W H Freeman and Company: 69.
Saucier F, Humphreys E, Weldon II R. 1992. Stress near geometrically complex strike-slip faults: Application to the San Andreas fault at Cajon Pass, southern California[J]. J Geophys Res, 97(B4 ): 5081-5094. doi: 10.1029/91JB02644
Savage J C, Burford R O. 1973. Geodetic determination of relative platemotion in central California[J]. J Geophys Res, 78(5): 832-845. doi: 10.1029/JB078i005p00832
Savage J C, Svarc J L.1997. Postseismic deformation associated with the 1992 MW7.3 Landers earhquake, southern California[J]. J Geophys Res, 102(B4): 7565-7577. http://cn.bing.com/academic/profile?id=2164476182&encoded=0&v=paper_preview&mkt=zh-cn
Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd Edition. Cambridge: Cambridge University Press: 136-155.
Schulz S E, Evans J P. 2000. Mesoscopic structure of the Punchbowl fault, southern California and the geologic and geophysical structure of active strike-slip faults[J]. J Struct Geol, 22(7): 913-930. doi: 10.1016/S0191-8141(00)00019-5
Stein S, Liu M. 2009. Long aftershock sequences within continents and implications for earthquake hazard assessment[J]. Nature, 462(7269): 87-89. doi: 10.1038/nature08502.
Thatcher W, Pollitz F F. 2008. Temporal evolution of continental lithospheric strength in actively deforming regions[J]. GSA Today, 18(4/5): 4-11. doi: 10.1130/GSAT01804-5A.1.
Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. Geophys Magaz, 30: 521-605. http://cn.bing.com/academic/profile?id=1522985695&encoded=0&v=paper_preview&mkt=zh-cn
Yamaguchi T, Morishita M, DoiM, Hori T, Sakaguchi H, Ampuero J P. 2011. Gutenberg-Richter’s law in sliding friction of gels[J]. J Geophys Res, 116(B12): B12306. doi: 10.1029/2011JB008415.
Zhao D P, Kanamori H, Negishi H, Wiens D. 1996. Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?[J]. Science, 274(5294): 1891-1894. doi: 10.1126/science.274.5294.1891
Zhu S B, Cai Y E. 2006. Inversion of viscous properties of crust and mantle from the GPS temporal series measurements[J]. Chinese Journal of Geophys, 49(3): 679-687. doi: 10.1002/cjg2.v49.3
Zhu S B, Zhang P Z. 2010. Numeric modeling of the strain accumulation and release of the 2008 Wenchuan, Sichuan, China, earthquake[J]. Bull Seismol Soc Am, 100(5B): 2825-2839. doi: 10.1785/0120090351
Zhu S B, Zhang P Z. 2013. FEM simulation of interseismic and coseismic deformation associated with the 2008 Wenchuan earthquake[J]. Tectonophysics, 584: 64-80. doi: 10.1016/j.tecto.2012.06.024