2016年新西兰MS8.0地震震源及强地面运动特征分析

Source parameters of the 2016 MS8.0 New Zealand earthquake and characteristics of strong ground motion observations

  • 摘要: 2016年11月13日新西兰发生MS8.0地震,该地震造成2人死亡,20多人受伤,仅10余栋房屋严重受损,致灾特征较轻. 本文针对新西兰MS8.0地震的震源参数特征,对该地震的震源过程进行了分析. 结果表明,该地震的地震波辐射能量和视应力均偏低,震源破裂过程为应力上调模式,发震断层破裂相对充分,余震相对丰富.结合新一代衰减关系(NGA)的分析结果显示,该地震的强地面运动峰值加速度(PGA)观测记录整体偏低,与基于震源参数对该地震PGA的理论估算结果较为一致. 进一步选取10 km范围内6个台站的强震观测记录进行比较研究,初步认为影响该地震近断层区域PGA高值的因素主要是断层破裂面上最大滑动集中区的位置,而非主震的初始破裂位置. 综合研究表明,新西兰MS8.0地震的强地面运动主要受到应力上调模式和最大滑动集中区位置的影响,致灾特征较轻则可能源于峰值加速度偏低和地表破坏较大地区的人口相对稀少.

     

    Abstract: The New Zealand earthquake of November 13, 2016, MS8.0 occurred near the Kaikoura area in the South Island, New Zealand, with focal depth of 11 km. The MS8.0 earthquake occurred on the transform boundary faults between the Pacific Plate and the Australian Plate, and the focal mechanism solution shows the earthquake is of thrust type event. Two people were killed, twenty or so people were injured and more than ten buildings were destroyed during this earthquake, so the damage level is not so severe in consideration about the huge magnitude. In this study, we analyzed the dynamic source process according to the source parameters, it can be confirmed that the radiated energy and the apparent stress of the New Zealand earthquake are small and minor. The results indicate a frictional overshoot behavior in the dynamic source process of the earthquake, which is actually with sufficient rupture and more abundant moderate aftershocks. Comparison with the next generation attenuation (NGA) relationship indicates that the observed horizontal peak ground acceleration (PGA) of the strong ground motion is generally small. The ground motion observations show that the recordings of New Zealand MS8.0 earthquake are less than the New Zealand MW6.1 earthquake in 2011 with nearly 200 deaths. In addition, we studied the characteristics of the observed PGAs at the six near-fault stations, which are located in the area less than 10 km to the main fault. The relatively high ground motion of the six stations may be produced by the higher slip around the asperity area rather than the initial rupture position on the main plane. In fact, the less damage level of New Zealand MS8.0 earthquake may probably result from the smaller strong ground motion and the rare population in the near fault area, with the most severe surface destruction.

     

/

返回文章
返回