Source parameters of the 2016 MS8.0 New Zealand earthquake and characteristics of strong ground motion observations
-
摘要: 2016年11月13日新西兰发生MS8.0地震,该地震造成2人死亡,20多人受伤,仅10余栋房屋严重受损,致灾特征较轻. 本文针对新西兰MS8.0地震的震源参数特征,对该地震的震源过程进行了分析. 结果表明,该地震的地震波辐射能量和视应力均偏低,震源破裂过程为应力上调模式,发震断层破裂相对充分,余震相对丰富.结合新一代衰减关系(NGA)的分析结果显示,该地震的强地面运动峰值加速度(PGA)观测记录整体偏低,与基于震源参数对该地震PGA的理论估算结果较为一致. 进一步选取10 km范围内6个台站的强震观测记录进行比较研究,初步认为影响该地震近断层区域PGA高值的因素主要是断层破裂面上最大滑动集中区的位置,而非主震的初始破裂位置. 综合研究表明,新西兰MS8.0地震的强地面运动主要受到应力上调模式和最大滑动集中区位置的影响,致灾特征较轻则可能源于峰值加速度偏低和地表破坏较大地区的人口相对稀少.Abstract: The New Zealand earthquake of November 13, 2016, MS8.0 occurred near the Kaikoura area in the South Island, New Zealand, with focal depth of 11 km. The MS8.0 earthquake occurred on the transform boundary faults between the Pacific Plate and the Australian Plate, and the focal mechanism solution shows the earthquake is of thrust type event. Two people were killed, twenty or so people were injured and more than ten buildings were destroyed during this earthquake, so the damage level is not so severe in consideration about the huge magnitude. In this study, we analyzed the dynamic source process according to the source parameters, it can be confirmed that the radiated energy and the apparent stress of the New Zealand earthquake are small and minor. The results indicate a frictional overshoot behavior in the dynamic source process of the earthquake, which is actually with sufficient rupture and more abundant moderate aftershocks. Comparison with the next generation attenuation (NGA) relationship indicates that the observed horizontal peak ground acceleration (PGA) of the strong ground motion is generally small. The ground motion observations show that the recordings of New Zealand MS8.0 earthquake are less than the New Zealand MW6.1 earthquake in 2011 with nearly 200 deaths. In addition, we studied the characteristics of the observed PGAs at the six near-fault stations, which are located in the area less than 10 km to the main fault. The relatively high ground motion of the six stations may be produced by the higher slip around the asperity area rather than the initial rupture position on the main plane. In fact, the less damage level of New Zealand MS8.0 earthquake may probably result from the smaller strong ground motion and the rare population in the near fault area, with the most severe surface destruction.
-
-
图 2 新西兰MS8.0地震主震发震断层面上的滑动位移分布图
图(a)引自中国地震局地球物理研究所(2016),图(b)引自USGS(2016)
Figure 2. Cross-section of slip distribution on the main fault for the MS8.0 New Zealand earthquake
Fig.(a)refers to Institute of Geophysics,China Earthquake Administration(2016),and Fig.(b)refers to USGS(2016). The strike direction is indicated above each fault plane and the hypocenter location is denoted by a star
图 3 断层动态破裂过程中应力上调模式示意图(修改自Savage,Wood,1971)
σ1和σ2分别为初始应力和最终应力,σd为动态应力,u为位移,Δū为断层面上平均滑动位移,Eh为摩擦热能,即为图中所示灰色矩形块面积
Figure 3. Overshoot model during the dynamic rupture process of seismogenic fault revised from Savage and Wood(1971)
σ1 and σ2 are initial and final stress,respectively,σd is dynamic stress,u is slip displacement,and Δū is the mean slip on the fault plan,Eh is frictional heat energy represented as the area of the gray rectangular
图 4 CESMD(2016)公布的新西兰地震强震观测数据与NGA衰减曲线对比图
Figure 4. Comparison of the observed PGA-H (squares)of New Zealand earthquake from CESMD(2016)with the NGA
Red solid line is NGA of observed PGA-H,blue and green dash lines are ±95% confidence interval curve of NGA,respectively
表 1 2016年新西兰MS8.0地震震源及断层参数
Table 1 Source and fault parameters of the MS8.0 New Zealand earthquake in 2016
研究机构 震中位置 震级 深度
/km走向
/°倾角
/°滑动角
/°M0
/(1020N·m)地震波辐射
能量/(1016 J)经度/°E 纬度/°S 中国地震台网中心
(2016)173.13 42.78 MS8.0 11 209 14 106 - - 中国地震局地球物理
研究所(2016)173.13 42.78 MW7.9 10 - - - - - USGS(2016) 173.08 42.76 MW7.8 15.5 219 38 128 7.04 - IRIS(2016) 173.08 42.76 MW7.8 23 226 33 143 - 1.7 GCMT(2016) 173.98 41.93 MW7.8 18.8 226 33 143 6.71 - GNS(2016b) 173.02 42.69 MW7.8 15.1 - - - - - 表 2 2016年新西兰MS8.0地震的强震观测记录
Table 2 Strong motion observation of the MS8.0 New Zealand earthquake in 2016
台站名称 台站位置 PGA-H/(cm·s-2) df/km depi/km WDFS (174.14°E, 41.83°S) 1253 0 133 SEDS (174.08°E, 41.67°S) 744 4.8 143 MOLS (173.26°E, 42.09°S) 357 4.0 70 CECS (173.28°E, 42.82°S) 282 18.5 25 MGCS (173.94°E, 41.51°S) 264 5.4 152 HSES (172.83°E, 42.53°S) 259 0 25 QCCS (174.02°E, 41.28°S) 258 22.7 178 VUWS (174.78°E, 41.28°S) 229 56.6 214 NBSS (174.95°E, 41.20°S) 209 72.3 230 WNKS (174.74°E, 41.29°S) 216 54.3 212 -
陈运泰, 杨智娴, 张勇, 刘超. 2013. 从汶川地震到芦山地震[J]. 中国科学: 地球科学, 43(6): 1064-1072. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201306015.htm Chen Y T, Yang Z X, Zhang Y, Liu C. 2013. From 2008 Wenchuan earthquake to 2013 Lushan earthquake[J]. Scientia Sinica Terrae, 43(6): 1064-1072 (in Chinese).
孟令媛, 史保平. 2012. 2011年新西兰MW6.1 地震震源过程及强地面运动特征初步分析[J]. 地球物理学报, 55(5): 1601-1612. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW201110001330.htm Meng L Y, Shi B P. 2012. Source rupture process of the February 21, 2011, MW6.1 , New Zealand earthquake and the characteristics of the near-field strong ground motion[J]. Chinese Journal of Geophysics, 55(5): 1601-1612 (in Chinese). http://cn.bing.com/academic/profile?id=0a5f4e56955c1977c921f06224963c2c&encoded=0&v=paper_preview&mkt=zh-cn
孟令媛, 史保平, 刘杰. 2013a. 2010年新西兰MW7.0 主震与2011年MW6.1 余震近场强地面运动特征比较分析[J]. 地震学报, 35(3): 351-368. http://www.dzxb.org/Magazine/Show?id=28845 Meng L Y, Shi B P, Liu J. 2013a. Characteristics of strong ground motion from the sequence of New Zealand earthquake: 2010, MW7.0 , main shock and 2011, MW6.1 , aftershock[J]. Acta Seismologica Sinica, 35(3): 351-368 (in Chinese). http://cn.bing.com/academic/profile?id=ad4e822d52d8b46832191c4ee27bd150&encoded=0&v=paper_preview&mkt=zh-cn
孟令媛, 周龙泉, 刘杰. 2013b. 2013年芦山MS7.0 地震震源参数特征及近断层强地面运动初步估计[J]. 地震学报, 35(5): 632-641. http://www.dzxb.org/Magazine/Show?id=28871 Meng L Y, Zhou L Q, Liu J. 2013b. Source parameters of the 2013 Lushan MS7.0 earthquake and the characteristics of the near-fault strong ground motion[J]. Acta Seismologica Sinica, 35(5): 632-641 (in Chinese). http://cn.bing.com/academic/profile?id=5fad3981673f327fe32822c7418bc097&encoded=0&v=paper_preview&mkt=zh-cn
徐锡伟, 闻学泽, 韩竹军, 陈桂华, 李传友, 郑文俊, 张世民, 任治坤, 许冲, 谭锡斌, 魏占玉, 王明明, 任俊杰, 何仲, 梁明剑. 2013. 四川芦山7.0 级强震: 一次典型的盲逆断层型地震[J]. 科学通报, 58(20): 1887-1893. http://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201320002.htm Xu X W, Wen X Z, Han Z J, Chen G H, Li C Y, Zheng W J, Zhang S M, Ren Z K, Xu C, Tan X B, Wei Z Y, Wang M M, Ren J J, He Z, Liang M J. 2013. Lushan MS7.0 earthquake: A blind reserve-fault event[J]. Chinese Science Bulletin, 58(28): 3437-3443. http://cn.bing.com/academic/profile?id=71edb853384d820d5951c5010b46e5a2&encoded=0&v=paper_preview&mkt=zh-cn
赵烽帆, 史海霞, 周志华. 2014. 2008年汶川MS8.0 地震和2013年芦山MS7.0 地震震源特征比较分析[J]. 中国地震, 30(4): 604-610. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201404013.htm Zhao F F, Shi H X, Zhou Z H. 2014. Characteristics of the source parameters and the rupture processes for the 2 earthquakes in the Longmenshan fault zone: The 2008 MS8.0 Wenchuan earthquake and the 2013 MS7.0 Lushan earthquake[J]. Earthquake Research in China, 30(4): 604-610 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201404013.htm
中国地震局地球物理研究所. 2016. 2016年11月13日新西兰8.0 级地震震源机制解[EB/OL]. [2016-12-11]. http://www.cea-igp.ac.cn/tpxw/275058.shtml. Institute of Geophysics, China Earthquake Administration. 2016. Focal mechanism solution for New Zealand, MS8.0 , earthquake on November 13, 2016[EB/OL]. [2016-12-11]. http://www.cea-igp.ac.cn/tpxw/275058.shtml (in Chinese).
中国地震台网中心. 2016. 2016年11月13日新西兰8.0 级地震[EB/OL]. [2016-12-11]. http://10.5.160.59/netoffice/module/info/portal/custom/dzj/dzj_news_display.jsp?GeneralID=164333. China Earthquake Networks Center. 2016. New Zealand, MS8.0 , earthquake on November 13, 2016[EB/OL]. [2016-12-11]. http://10.5.160.59/netoffice/module/info/portal/custom/dzj/dzj_news_display.jsp?GeneralID=164333 (in Chinese).
Andrews D J. 1986. Objective determination of source parameters and similarity of earthquakes of different size[G]//Das S, Boatwright J, Scholz C H eds. Earthquake Source Mechanics. Washington DC: AGU: 259-267.
Boore D M, Atkinson G M. 2007. Boore-Atkinson NGA Ground Motion Relations for the Geometric Mean Horizontal Component of Peak and Spectral Ground Motion Parameters, PEER Report 2007/01[R]. Berkeley, Calif: Pacific Earthquake Engineering Research Center: 17.
Boore D M, Atkinson G M. 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5%-damped PSA at spectral periods between 0.0 1 s and 10.0 s[J]. Earthq Spectra, 24(1): 99-138. doi: 10.1193/1.2830434
Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. J Geophys Res, 75(26): 4997-5009. doi: 10.1029/JB075i026p04997
Brune J N. 1976. The physics of earthquake strong motion[G]//Lomnitz C, Rosenblueth E eds. Seismic Risk and Engineering Decisions. New York: Elsevier Sci Publ Co: 141-177.
CESMD. 2016. Observations for the New Zealand earthquake on November 14, 2016[EB/OL]. [2016-12-10]. http://www.strongmotioncenter.org/cgi-bin/CESMD/iqr_dist_DM2.pl?iqrID=AmberleyNewZealand_13Nov2016_us1000778i&SFlag=0&Flag=2.
Choy G L, Boatwright J L. 1995. Global patterns of radiated seismic energy and apparent stress[J]. J Geophys Res, 100(B9): 18205-18228. doi: 10.1029/95JB01969
GCMT. 2016. Global centroid moment tensor project[EB/OL]. [2016-12-11]. http://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT4/form?itype=ymd&yr=2016&mo=11&day=13&oyr=2016&omo=11&oday=30&jyr=1976&jday=1&ojyr=1976&ojday=1&otype=nd&nday=1&lmw=7&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000<s=-9999&uts=9999&lpe=1=0&upe1=90&lpe2=0&upe2=90&list=0.
GeoNet. 2016. M7.8 Kaikoura earthquake[EB/OL]. [2016-12-11]. http://info.geonet.org.nz/display/home/2016/11/14/M7.8+Kaikoura+Earthquake%3A+Latest+updates.
GNS. 2016a. Aftershocks of the New Zealand earthquake[EB/OL]. [2016-12-11]. http://info.geonet.org.nz/display/appdata/Earthquake+Catalogue.
GNS. 2016b. New Zealand, MW7.8 , earthquake on November 14, 2016[EB/OL]. [2016-12-11]. http://info.geonet.org.nz/display/home/2016/11/14/M7.8+Kaikoura+Earthquake%3A+Latest+updates.
IRIS. 2016. New Zealand, MW7.8 , earthquake on 2016[EB/OL]. [2016-12-11]. http://ds.iris.edu/spud/eqenergy/13298836.
Langridge R, Campbell J, Hill N, Pere V, Pope J, Pettinga J, Estrada B, Berryman K. 2003. Paleoseismology and slip rate of the Conway segment of the Hope fault at Greenburn Stream, South Island, New Zealand[J]. Ann Geophys, 46(5): 1119-1139. http://cn.bing.com/academic/profile?id=18c7ecf7c3183a60482bba238cd86758&encoded=0&v=paper_preview&mkt=zh-cn
Orowan E. 1960. Mechanism of seismic faulting in rock deformation: A symposium[J]. Geol Soc Am Mem, 79: 323-345. doi: 10.1130/MEM79
Savage J C, Wood M D. 1971. The relation between apparent stress and stress drop[J]. Bull Seismol Soc Am, 61(5): 1381-1388. http://cn.bing.com/academic/profile?id=986179a02684652842d15fe87c64e951&encoded=0&v=paper_preview&mkt=zh-cn
Shi B P, Liu B Y, Meng L Y. 2010. Bounding of near-fault ground motion based on radiated seismic energy with a consideration of fault frictional mechanisms[J]. Earthquake Science, 23(4): 357-368. doi: 10.1007/s11589-010-0733-7
Smith K D, Brune J N, Priestly K F. 1991. The seismic spectrum, radiated energy, and the Savage and Wood inequality for complex earthquakes[J]. Tectonophysics, 188(3/4): 303-320. http://cn.bing.com/academic/profile?id=6d8922340038d2d58c3a38c9b3f19cf3&encoded=0&v=paper_preview&mkt=zh-cn
Starr A T. 1928. Slip in a crystal and rupture in a solid due to shear[J]. Math Proc Cambr Philosoph Soc, 43(4): 489-500. http://cn.bing.com/academic/profile?id=bc67c1ae5e48af43cd445bc9cf366006&encoded=0&v=paper_preview&mkt=zh-cn
USGS. 2016. New Zealand, MW7.8 , earthquake on 2016[EB/OL]. [2016-12-11]. http://earthquake.usgs.gov/earthquakes/eventpage/us1000778i#executive.
Wyss M, Brune J N. 1968. Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region[J]. J Geophys Res, 73 (14): 4681-4694. doi: 10.1029/JB073i014p04681