Upper crustal anisotropy in the eastern Himalayan syntaxis
-
摘要: 本文利用雅鲁藏布江下游台阵的16个台站2016年度的近震数据,通过横波窗内的横波分裂测量,在各台站总计得到369个有效的横波分裂参数对,分析得出喜马拉雅东构造结上地壳各向异性特征。空间上,各台站的快波偏振优势方向整体上自西向东由近EW向,转为NE向,然后转向近NS或NNE向,最后转向NW向。大部分靠近或位于活动断裂带上的台站的快波偏振优势方向与断裂的走向一致,主要体现在墨竹工卡断裂上的ZOS台,雅鲁藏布江断裂上的WOL,NYG,ZIB和DOJ台站,墨脱断裂上的BEB和DEX台站,以及迫龙—旁辛断裂上的BAX和DAM台站;而距离雅鲁藏布江断裂西段和东段各有一定距离的LAD和YIG台站,以及位于雅鲁藏布江断裂东段与嘉利断裂交会处的TOM台的快波偏振优势方向与断裂走向存在一定角度,但其与喜马拉雅东构造结主压应力场方向NNE向基本一致。上地壳各向异性整体体现了结构控制和应力控制的特征,但各台站的横波分裂参数并未表现出随时间的规律变化特征,这可能与2016年研究区地震活动强度较弱有关。研究区各台站间存在较大的横波分裂参数差异和自身离散度,反映出东构造结复杂的构造特征和剧烈的变形作用。Abstract: Based on the local seismic recordings of 16 seismic stations from the lower Yarlung Zangbo River array in 2016, we present 369 valid shear wave splitting parameter pairs by analyzing shear wave particle motion in the shear wave window so as to analyze the upper crust anisotropy characteristics in the eastern Himalayan syntaxis. We analyze the spatio-temporal characteristics of the shear wave splitting parameter. The spatial distribution of fast polarization directions shows a clear change from west to east that are oriented near EW to NE, to near NS or NNE, and then to NW. The fast polarization directions of most stations are close to or locate in the active fault zone are consistent with the strikes of the faults, which are mainly reflected in the station ZOS in the Mozhugongka fault, four stations (WOL, NYG, ZIB and DOJ) in the Yarlung Zangbo River fault, two stations (BEB and DEX) in the Motuo fault, and two stations (BAX and DAM) in Polong-Pangxin fault. At the stations mentioned above, the fast polarization directions are consistent with the strikes of the faults, which demonstrates upper crustal seismic anisotropy is mainly controlled by the structure. The fast polarization directions at two stations (LAD and YIG) far away from the Yarlung Zangbo River fault and the station TOM located at the intersection of the east section of the Yarlung Zangbo River fault and the Jiali fault are inconsistent with the fault strike. However, the fast polarization directions at the above three stations (LAD, YIG and TOM) are consistent with the maximum horizontal compressive stress directions NNE in the eastern Himalayan syntaxis, which reflects that upper crustal anisotropy is also controlled by the local stress field. With regard to the temporal variation, the shear wave splitting parameters at each station do not show the regular change characteristics with time, which is related to the weak intensity of seismicity in the study area in 2016. The large difference of shear wave splitting parameters and the large dispersion of each station in the study area reflect the strong deformation and complicated structure in eastern Himalayan syntaxis.
-
Keywords:
- eastern Himalayan syntaxis /
- shear wave splitting /
- crustal stress /
- active fault
-
-
图 1 喜马拉雅东构造结区域构造(邓起东等,2002)及台站和2016年近震的分布
F1:雅鲁藏布江断裂;F2:墨脱断裂;F3:嘉黎断裂;F4:迫龙—旁辛断裂;F5:阿帕龙断裂;F6:主边界断裂;F7:墨竹工卡断裂;F8:班公错—怒江断裂。左上角为GPS计算的青藏高原地壳运动速度场(Gan et al,2007),其中黑框为研究区
Figure 1. The regional geologic setting (Deng et al,2003) and distribution of local earthquakes in 2016 andstations in the eastern Himalayan syntaxis
F1:Yarlung Zangbo River fault;F2:Motuo fault;F3:Jiali fault;F4:Polong-Pangxin fault;F5:Apalon fault;F6:Main boundary fault;F7:Mozhugongka fault;F8:Bangongcuo-Nujiang fault. Inset shows the surface velocity field determined from GPS observations in the Tibetan Plateau (Gan et al,2007),and black frame is the studied region
图 2 BAX台站的一次近震波形记录的横波分裂分析示例
(a) 原始横波的三分量波形记录;(b) 图(a)中P波初动窗口放大后的波形记录;(c) 两水平分量的波形记录;(d) 两水平分量的横波质点运动;(e) 旋转到快、慢波方向的水平分量波形;(f) 去除各向异性校正后快、慢波水平分量;(g) 校正后的快、慢波水平分量的质点运动图;(h)用于横波分裂分析的近震震源深度分布
Figure 2. An example of shear wave splitting analysis for a recording at station BAX
(a) Three-component records of original seismic waveform;(b) Amplified three-component records of P wave in Fig.(a);(c) Two horizontal components of seismograms;(d) Shear wave particle motion in horizontal;(e) Seismograms rotated to the fast and slow shear wave directions;(f) Corrected seismograms in fast-slow coordinate system;(g) Partical motion of the corrected phases;(h) The focal depth distribution of the earthquakes used in shear wave splitting
表 1 各台站基本参数与横波分裂参数
Table 1 Station parameters and results of shear-wave splitting
台站代码 东经/° 北纬/° 快波偏振
方向/°快波偏振方向
标准差/°到时延迟
/(ms·km−1)到时延迟标准差
/(ms·km−1)有效记
录条数BAX 95.4 29.6 177 17 2.04 0.65 31 BEB 95.2 29.2 41 4 1.35 0.60 2 DAM 95.5 29.5 165 29 1.83 0.50 12 DEX 95.3 29.3 26 33 1.91 0.92 21 DOJ 94.8 30.0 55 25 1.57 0.68 54 LAD 93.1 29.0 1 12 2.26 0.49 27 NYG 94.2 29.1 60 9 1.07 0.39 3 QID 95.6 30.1 108 9 1.67 0.47 26 SAM 97.0 28.4 165 22 1.87 0.47 59 SCY 96.7 28.8 156 32 0.99 0.25 7 TOM 95.1 30.1 18 13 1.36 0.40 27 WOL 93.7 29.1 96 10 1.48 0.13 3 YIG 94.8 30.2 12 17 1.68 0.66 4 ZIB 94.9 29.6 38 16 0.97 0.28 60 ZOB 96.3 29.6 122 13 2.23 0.46 4 ZOS 93.3 29.8 89 21 1.61 0.32 29 -
常利军,丁志峰,王椿镛. 2010. 2010年玉树7.1级地震震源区横波分裂的变化特征[J]. 地球物理学报,53(11):2613–2619. Chang L J,Ding Z F,Wang C Y. 2010. Variations of shear wave splitting in the 2010 Yushu MS7.1 earthquake region[J]. Chinese Journal of Geophysics,53(11):2613–2619 (in Chinese).
程成,白玲,丁林,李国辉,杨建亚,许强. 2017. 利用接收函数方法研究喜马拉雅东构造结地区地壳结构[J]. 地球物理学报,60(8):2969–2979. doi: 10.6038/cjg20170806 Cheng C,Bai L,Ding L,Li G H,Yang J Y,Xu Q. 2017. Crustal structure of eastern Himalayan Syntaxis revealed by receiver function method[J]. Chinese Journal of Geophysics,60(8):2969–2979 (in Chinese).
邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:D辑,32(12):1020–1030. Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.
丁志峰,武岩,王辉,周晓峰,李桂银. 2008. 2008年汶川地震震源区横波分裂的变化特征[J]. 中国科学:D辑,38(12):1600–1604. Ding Z F,Wu Y,Wang H,Zhou X F,Li G Y. 2008. Variations of shear wave splitting in the 2008 Wenchuan earthquake region[J]. Science in China:Series D,51(12):1712–1716. doi: 10.1007/s11430-008-0141-1
高原,郑斯华,周蕙兰. 1999. 唐山地区快剪切波偏振图像及其变化[J]. 地球物理学报,42(2):228–232. doi: 10.3321/j.issn:0001-5733.1999.02.010 Gao Y,Zheng S H,Zhou H L. 1999. Polarization patterns of fast shear wave in Tangshan region and their variations[J]. Chinese Journal of Geophysics,42(2):228–232 (in Chinese).
高原,石玉涛,陈安国. 2018. 青藏高原东缘地震各向异性、应力及汶川地震影响[J]. 科学通报,63(19):1934–1948. Gao Y,Shi Y T,Chen A G. 2018. Crustal seismic anisotropy and compressive stress in the eastern margin of the Tibetan Plateau and the influence of the MS8.0 Wenchuan earthquake[J]. Chinese Science Bulletin,63(19):1934–1948 (in Chinese). doi: 10.1360/N972018-00317
郭桂红,张智,程建武,董治平,闫建萍,马亚维. 2015. 青藏高原东北缘地壳各向异性的构造含义[J]. 地球物理学报,58(11):4092–4105. Guo G H,Zhang Z,Cheng J W,Dong Z P,Yan J P,Ma Y W. 2015. Seismic anisotropy in the crust in northeast margin of Tibetan Plateau and tectonic implication[J]. Chinese Journal of Geophysics,58(11):4092–4105 (in Chinese).
邵翠茹,尤惠川,曹忠权,王椿镛,唐方头,张德成,楼海,胥广银,常利军,杨歧焱,美朵,谢平,俞岗. 2008. 雅鲁藏布大峡谷地区构造和地震活动特征[J]. 震灾防御技术,3(4):398–412. doi: 10.3969/j.issn.1673-5722.2008.04.010 Shao C R,You H C,Cao Z Q,Wang C Y,Tang F T,Zhang D C,Lou H,Xu G Y,Chang L J,Yang Q Y,Mei D,Xie P,Yu G. 2008. Tectonic characteristics and seismic activities of Yaluzangbu grand canyon,Tibet,China[J]. Technology for Earthquake Disaster Prevention,3(4):398–412 (in Chinese).
王晓楠,唐方头,邵翠茹. 2018. 南迦巴瓦构造结周边地区主要断裂现今运动特征[J]. 震灾防御技术,13(2):267–275. doi: 10.11899/zzfy20180202 Wang X N,Tang F T,Shao C R. 2018. The current movement characters of main faults surrounding the Namcha Barwa Syntaxis[J]. Technology for Earthquake Disaster Prevention,13(2):267–275 (in Chinese).
吴晶,太龄雪,高原,石玉涛,焦明若. 2009. 辽宁岫岩MS5.9地震前应力积累的讨论[J]. 地震,29(3):37–44. doi: 10.3969/j.issn.1000-3274.2009.03.005 Wu J,Tai L X,Gao Y,Shi Y T,Jiao M R. 2009. Discussions on stress accumulation before the 1999 Xiuyan MS5.9 earthquake in Liaoning,China[J]. Earthquake,29(3):37–44 (in Chinese).
许忠淮. 2001. 东亚地区现今构造应力图的编制[J]. 地震学报,23(5):492–501. doi: 10.3321/j.issn:0253-3782.2001.05.005 Xu Z H. 2001. A present-day tectonic stress map for eastern Asia region[J]. Acta Seismologica Sinica,23(5):492–501 (in Chinese).
许志琴,蔡志慧,张泽明,李化启,陈方远,唐泽民. 2008. 喜马拉雅东构造结:南迦巴瓦构造及组构运动学[J]. 岩石学报,24(7):1463–1476. Xu Z Q,Cai Z H,Zhang Z M,Li H Q,Chen F Y,Tang Z M. 2008. Tectonics and fabric kinematics of the Namche Barwa terrane,eastern Himalayan syntaxis[J]. Acta Petrologica Sinica,24(7):1463–1476 (in Chinese).
姚陈,王培德,陈运泰. 1992. 卢龙地区S波偏振与上地壳裂隙各向异性[J]. 地球物理学报,35(3):305–315. doi: 10.3321/j.issn:0001-5733.1992.03.005 Yao C,Wang P D,Chen Y T. 1992. Shear-wave polarization and crack induced anisotropy of upper crust in Lulong,North China[J]. Acta Geophysica Sinica,35(3):305–315 (in Chinese).
杨建亚,白玲,李国辉,程成. 2017. 东喜马拉雅构造结地区地震活动及其构造意义[J]. 国际地震动态,(6):12–18. doi: 10.3969/j.issn.0253-4975.2017.06.004 Yang J Y,Bai L,Li G H,Cheng C. 2017. Seismicity in the eastern Himalayan syntaxis and its tectonic implications[J]. Recent Developments in World Seismology,(6):12–18 (in Chinese).
中国地震台网中心. 2016. 历史地震查询[EB/OL]. [2019-12-12]. http://www.ceic.ac.cn/history. China Earthquake Networks Center. 2016. Historical seismic queries [EB/OL]. [2019-12-12]. http://www.ceic.ac.cn/history (in Chinese).
Bai L,Li G H,Khan N G,Zhao J M,Ding L. 2017. Focal depths and mechanisms of shallow earthquakes in the Himalayan-Tibetan region[J]. Gondwana Res,41(B8):390–399.
Boness N L,Zoback M D. 2006. Mapping stress and structurally controlled crustal shear velocity anisotropy in California[J]. Geology,34(10):825–828. doi: 10.1130/G22309.1
Chang L J,Flesch L M,Wang C Y,Ding Z F. 2015. Vertical coherence of deformation in lithosphere in the eastern Himalayan syntaxis using GPS,Quaternary fault slip rates,and shear wave splitting data[J]. Geophys Res Lett,42(14):5813–5819. doi: 10.1002/2015GL064568
Chen T C,Booth D C,Crampin S. 1987. Shear-wave polarizations near the North Anatolian fault:Ⅲ. Observations of temporal changes[J]. Geophys J Int,91(2):287–311. doi: 10.1111/j.1365-246X.1987.tb05228.x
Crampin S,Atkinson B K. 1985. Microcracks in the earth’s crust[J]. First Break,3(3):16–20.
Crampin S,Volti T,Stefánsson R. 1999. A successfully stress-forecast earthquake[J]. Geophys J Int,138(1):F1–F5. doi: 10.1046/j.1365-246x.1999.00891.x
Crampin S,Peacock S. 2005. A review of shear-wave splitting in the compliant crack-critical anisotropic earth[J]. Wave Motion,41(1):59–77. doi: 10.1016/j.wavemoti.2004.05.006
Gan W J,Zhang P Z,Shen Z K,Niu Z J,Wang M,Wan Y G,Zhou D M,Cheng J. 2007. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements[J]. J Geophys Res,112(B8):B08416. doi: 10.1029/2005JB004120
Gao Y,Crampin S. 2003. Temporal variations of shear-wave splitting in field and laboratory studies in China[J]. J Appl Geophys,54(3/4):279–287.
Liu Y,Crampin S,Main I. 1997. Shear-wave anisotropy:Spatial and temporal variations in time delays at Parkfield,central California[J]. Geophys J Int,130(3):771–785. doi: 10.1111/j.1365-246X.1997.tb01872.x
Mainprice D,Nicolas A. 1989. Development of a lattice preferred orientation of minerals[J]. Comput Geosci,16:385–393.
Peacock S,Crampin S,Booth D C,Fletcher J B. 1988. Shear wave splitting in the Anza seismic gap,southern California:Temporal variations as possible precursors[J]. J Geophys Res,93(B4):3339–3356. doi: 10.1029/JB093iB04p03339
Shih X R,Meyer R P,Schneider J F. 1989. An automated,analytical method to determine shear-wave splitting[J]. Tectonophysics,165(1/2/3/4):271–278.
Silver P G. 1996. Seismic anisotropy beneath the continents:Probing the depths of geology[J]. Annu Rev Earth Planet Sci,24:385–432. doi: 10.1146/annurev.earth.24.1.385
Sol S,Meltzer A,Bürgmann R,van der Hilst R D,King R,Koons P O,Lev E,Liu Y P,Zeitler P K,Zhang X,Zhang J,Zurek B. 2007. Geodynamics of the southeastern Tibetan Plateau from seismic anisotropy and geodesy[J]. Geology,35(6):563–566. doi: 10.1130/G23408A.1
Tapponnier P,Peltzer G,Le A Y,Le Dain A Y,Armijo R,Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2
Wang C Y,Mooney W D,Zhu L,Wang X,Lou H,You H,Gao Z,Chang L,Yao Z. 2019. Deep structure of the eastern Himalayan collision zone:Evidence for underthrusting and delamination in the postcollisional stage[J]. Tectonics,38(10):3614–3628. doi: 10.1029/2019TC005483
Wu C L,Tian X B,Xu T,Liang X F,Chen Y,Zhu G H,Badal J,Bai Z M,Yu G P,Teng J W. 2019. Upper-crustal anisotropy of the conjugate strike-slip fault zone in central Tibet analyzed using local earthquakes and shear-wave splitting[J]. Bull Seismol Soc Am,109(5):1968–1984. doi: 10.1785/0120180333
Yin A,Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen[J]. Annu Rev Earth Planet Sci,28:211–280. doi: 10.1146/annurev.earth.28.1.211