Characteristics of deep structure beneath Lhasa from multi-layer H-κ stacking method
-
摘要:
对不同深度莫霍面正演模拟的每条接收函数进行H-κ扫描,将得到的H和κ投影到平面图,发现同深度莫霍面的投影点能够拟合成一条曲线,进而通过该曲线能够分离不同深度界面对应的接收函数。在此基础上,再利用H-κ-θ方法计算估计倾斜界面的倾角和倾向。最终实现倾斜界面和“双莫霍”现象的辨识。利用此流程处理了拉萨固定台站(LSA)记录的大量接收函数,获得了拉萨台下方的地壳厚度约为70 km,地壳平均波速比约为1.67,莫霍面倾向北东,倾角为24°,而莫霍面下俯冲的印度板块界面深度约为106 km,倾向正北,倾角约为40°,其上方地幔楔内部的平均波速比约为1.69。正演模型计算结果和实际观测数据检验综合表明该方法能较好地区分不同界面对应的接收函数,藉此获取其界面的构造变化特征,有助于获得更加精细的壳幔结构特征。
Abstract:The Moho discontinuity, marking the boundary between the Earth’s crust and mantle, carries abundant information about the structure and evolution of the crust-mantle system. The “doublet Moho” phenomenon observed beneath the Tibetan Plateau complicates the investigation of Moho structure. The H-κ stacking of teleseismic receiver functions is a widely employed technique for determining Moho depth and crustal vP/vS ratios of horizontal layered crustal structure. The H-κ stacking was performed on each receiver function for different depth of the Moho from synthetic model. And, the obtained values of H and κ is projected onto a planar map, which reveals that the projected points corresponding to the same depth Moho interface align along a curve. Thus, the separated receiver functions is easily associated with distinct interface depths. Then, one can determine the dip direction of a tilted interface by analyzing the crustal thickness projection map. Subsequent processing can be targeted at each layer of receiver functions individually. Utilizing a large dataset of seismic recordings from LSA station of China Digital Seismograph Network, we follow the above-mentioned steps to separate the receiver functions of LSA and identify two key interfaces. Finally, employing the H-κ-θ method independently for each interface, we derived the following characteristics of the two interfaces: ① the crustal thickness beneath the Lhasa station is approximately 70 km with an average vP/vS ratio of about 1.67, and the Moho interface dips at an angle of 24°; ② the subducting Indian Plate interface lies at a depth of about 106 km with a dip angle of 40°. Above this interface of 106 km depth, the average vP/vS ratio within the mantle wedge between the two interfaces is approximately 1.69. Our results demonstrate the effectiveness of this method in distinguishing receiver functions corresponding to different interfaces. By integrating this approach with other techniques, more accurate subsurface structures can be elucidated, providing valuable insights into the geologic structure beneath the Qinghai-Xizang Plateau. This work contributes to a better understanding of the complex tectonic processes in this seismically active region.
-
Keywords:
- receiver function /
- multi-layer interface /
- dipping interface /
- LSA station
-
引言
北京时间2016年4月16日0时25分,日本九州岛熊本县发生MW7.0地震. 得益于日本完备的强震台网覆盖,本次地震中日本防灾技术研究所(National Research Institute for Earth Science and Disaster Resilience,简写为NIED)所属KiK-net和K-NET台网有超过690个台站记录到了震相完整的主震强震动加速度记录,其中61个台站获得了加速度大于0.98 m/s2的记录,255个台站的断层距小于200 km,150个台站的断层距小于100 km (Kato et al,2016 ;NIED,2016;Xieet al,2017 ). 此次熊本地震中获取到的大量近场记录为研究走滑型地震的近场强地震动特征以及场地效应影响提供了非常宝贵的资料.
本文将选取断层距小于200 km的82个近场KiK-net台站记录到的熊本地震三分量数据,采用分段校正的方法对该地震的近场强震记录进行基线校正,获取其近场加速度、速度时程,然后利用校正后的记录计算出近断层地震动的水平向峰值加速度(peak ground acceleration,简写为PGA)、峰值速度(peak ground velocity,简写为PGV)和特定周期的反应谱值,并与基于美国NGA-West2数据库中世界范围内获取的强震动记录得到的地震动预测模型相比较,以分析熊本地震的近断层地震动衰减特征. 每个KiK-net台站均可以同时在井下和地表获取强震动记录,这为我们研究场地放大效应提供了完备的数据,本文将通过比较KiK-net井底与地表记录结果,研究浅层场地的放大效应.
1. 强震记录数据
本文选取断层距小于200 km的82个KiK-net台站记录到的熊本地震三分量数据,来研究此次地震的近场强地面运动特征,并利用KiK-net台站的井底和地表记录结果,研究浅层场地的放大效应,选取的强震动台站分布如图1所示. KiK-net台站的井底和地表测点所获取的均为东西、南北和竖向的三分量加速度记录,每条记录的采样频率为100 Hz. 所使用的KiK-net台站的强震动记录数据可以在日本防灾技术研究所的网站下载(NIED,2016). 此外,我们收集了这82个强震动台站的场地钻孔资料,钻孔深度均大于30 m,可以由钻孔波速资料直接计算场地的30 m平均剪切波速vS30 (Boore,2004;Booreet al,2011 ). 强震动台站的场地类别可依据场地剪切波速vS30划分,参照美国国家地震减灾项目(National Earthquake Hazard Reduction Program,简写为NEHRP)建筑抗震规范中的分类标准进行场地分类(Luco et al,2015 ). 为了研究近场强震动随距离的衰减特性,我们所选用的断层距Rrup定义为台站到断层面的最短距离(Kaklamanos et al,2011 ),断层模型为USGS (2016)反演给出的有限断层模型(如图1).
2. 强震记录数据的基线校正
由于熊本地震的震级较大,部分近断层台站的加速度记录产生了一定程度的偏移. 虽然基线偏移对加速度时程的影响较小,但积分运算后,其对速度、位移时程的影响将急剧放大,因而需对获取的近场强震动记录进行基线校正. 数字化强震仪产生基线偏移的原因主要有两个:低频误差和仪器倾斜,其中低频误差主要包括场地背景噪声和仪器噪声,仪器倾斜主要由地震引起的地表变形所造成(Boore,2001). 由波动现象的因果律和地震辐射能量的限时性可知,地震波传播到地表前,地表的加速度、速度、位移均为零;地震结束足够长时间后,地表加速度、速度为零,位移为一常数,这两条规律是判断基线校正是否有效的最重要的准则. 此外,由于地面永久位移发生在强震阶段,在地震动末尾部分的位移时程曲线应该大致平行于时间轴,这也是判定基线校正是否有效的一条重要准则(王国权,周锡元,2004).
目前,强震记录的基线校正方法主要分为两类:一类是针对低频噪音、误差的滤波方法,例如美国地质调查局的BAP (basic acceleration processing)程序(Converse,Brady,1992);另一类是Iwan等(1985)提出的分段校正方法,下文简称Iwan方法. BAP的思路是先用一条直线拟合加速度时程,然后在加速度时程中减去该直线,再进行滤波处理;Iwan方法主要针对强震仪的磁滞效应,核心假设是由磁滞效应引起的基线偏移在加速度大于0.49 m/s2时开始出现,校正方法是选取加速度时程首次和最后一次达到0.49 m/s2的时间节点对加速度进行分段校正. Boore (2001)以及王国权和周锡元(2004)将Iwan方法简化为v0校正法,即用一直线拟合速度时程的末尾部分,并将拟合直线与时间轴的交点选取为基线偏移的起始点,再分段校正加速度时程记录,本文采用的即是这种基线校正方法,将速度时程末尾部分用
${{v_{ f} = v_0 + a_{ f}t}}$
(1) 拟合,式中vf为速度时程末段,v0为初始速度,af为速度时程基线的偏移斜率,对应加速度时程基线的偏移量. 拟合直线与时间轴的交点为 tf,表示基线偏移的开始时刻. 校正方法为:在tf之后的加速度记录中减去af,即可消除加速度时程中的基线偏移(王国权,周锡元,2004;谢俊举等,2013). 图2以KMMH14台地表的东西向记录为例给出本文所采用的基线方法,图3给出了KMMH14台站地表记录经校正后三分向的加速度和速度时程.
3. 地表和井下记录的强震动衰减特征
美国太平洋地震工程研究中心(Pacific Earthquake Engineering Research Center,简写为PEER) 2003年发起了一项大型研究计划NGA (next generation attenuation),旨在为构造活动区的浅地壳地震构建新一代地震地面运动预测方程(next generation ground motion prediction equations,简写为GMPEs),该计划(现称作NGA-West1)于2008年完成. 2013年,PEER在NGA-West1的基础上补充了2003—2011年世界范围内发生的构造活动区浅地壳地震记录,并发布新的NGA-West2数据库,包含607次地震的21 539条地震记录. 随同NGA-West2发布的还有5个地震水平向地面运动预测方程,分别为ASK14 (Abrahamsonet al,2014 ),BSSA14 (Boore et al,2014 ),CB14 (Campbell,Bozorgnia,2014),CY14 (Chiou,Youngs,2014)和I14 (Idriss,2014).
本文选取断层距小于200 km的82组KiK-net台站记录分析熊本地震近断层地震动的水平向PGA和PGV,以及阻尼比为5%、周期为0.2,1,2,3,5,10 s的加速度反应谱值的衰减特征,用Matlab进行数据统计回归分析,并与ASK14,BSSA14,CB14,CY14这4种模型的预测值作比较. 与NGA-West2的地震动预测模型一致,计算中我们取东西和南北两个分量的几何平均值作为水平向的PGA (或PGV)和加速度反应谱值. 本文拟合采用的衰减模型为lnIMs=a+bln(R2+c2)+dRrup+elnvS30,式中:IMs为衡量地面运动的具体参数,包含峰值加速度,峰值速度和反应谱;Rrup为断层距,定义为台站到断层面的最短距离,单位为km;a,b,c,d为模型参数. 表1给出了基于KiK-net井下记录数据所得的该模型的回归参数.
表 1 KiK-net井下记录回归得到的熊本地震近场地震动衰减模型的参数Table 1. Regression coefficients of the attenuation model obtained based on KiK-net borehole records地震动参数 a b c d e PGA 8.155 − 0.651 9 − 8.413 0 0 PGV 4.337 − 0.345 9 1.427 0 0 SA02 9.894 − 0.774 2 12.77 0 0 SA1 7.097 − 0.490 9 − 3.338 0 0 SA2 6.18 − 0.416 5 4.176 0 0 SA3 5.438 − 0.357 8 − 2.024 0 0 SA5 4.537 − 0.300 4 1.718 0 0 SA10 2.406 − 0.145 8 − 0.003 876 0 0 注:SA02,SA1,SA2,SA3,SA5,SA10表示阻尼比为5%,周期分别为0.2,1,2,3,5,10 s的加速度反应谱值,单位为cm/s2,下同. 图4给出了依据KiK-net井下台站记录得出的水平向地震动衰减曲线. 可以看出,NGA-West2的地震动模型(取vS30=760 m/s)对PGA和短周期地震动(例如周期为0.2 s的反应谱)的预测值与井下观测值相比整体偏高,而对PGV和较长周期地震动(例如周期T=1,2和3 s的反应谱),其预测值与观测值较为吻合,这可能是由于井下位置的岩石硬度比波速为760 m/s的基岩高所致. 考察所选取的KiK-net台站的场地波速资料,结果显示井下位置的实际剪切波速往往超过760 m/s,导致短周期部分的实际观测值较取波速vS30=760 m/s的预测结果整体偏小.
表2给出了基于KiK-net地表记录数据得到的衰减回归参数. 图5给出了基于KiK-net地表记录得到的水平向地震动衰减曲线. 可以看出,NGA-West2的地震动模型(取vS30=360 m/s)对PGA,PGV和短周期0.2 s地震动反应谱的预测值与真实值较为吻合,而对较长周期1,2和3 s地震动的预测值略高于观测值. 此外,从图4和图5我们注意到,随着周期的增大,NGA-West2的4个地震动模型预测结果之间的差异在增大(周期为3,5和10 s时最为明显),即NGA预测模型的可靠性在长周期有所降低(离散性增大),其中一个重要原因为每条强震动记录都有一个可用的有效周期范围,在长周期时可用的数据量大大减小(Gregor et al,2014 ).
表 2 基于KiK-net地表记录得到的地震动衰减参数Table 2. Ground motion attenuation coefficients based on KiK-net surface records地震动参数 a b c d e PGA 10.43 – 0.310 2 – 5.649 – 0.013 79 – 0.463 6 PGV 6.873 – 0.447 8 – 2.452 0 – 0.2262 SA02 12.92 – 0.622 2 – 14.03 – 0.006 032 – 0.390 9 SA1 11.84 – 0.619 – 3.605 0 – 0.509 5 SA2 9.813 – 0.492 6 – 3.989 0 – 0.440 9 SA3 8.135 – 0.399 7 – 2.641 0 – 0.351 7 SA5 5.159 – 0.312 5 – 1.449 0 – 0.068 8 SA10 2.691 – 0.17 – 0.001 549 0 0 4. 浅层场地的放大效应
日本KiK-net台站在井下和地表同时设有记录仪器,井下的钻孔底部深度到达基岩层,井下测点处的剪切波速往往超过760 m/s,相对于地表记录,井下记录可以作为很好的基岩参考台站. 我们利用KiK-net获取的井下与地表记录数据的对比,来研究浅层场地的放大效应. 图6给出了地表与井下记录到的水平向地震动峰值和反应谱值的对比结果,可以看出,相对于井下记录,地表记录地震动PGA,PGV和周期为0.2,1和2 s的反应谱有明显的放大效应,而周期为3,5和10 s的长周期地震动的放大效应很小. 该结果也进一步验证了李小军(2016)场地反应的数值模拟结果,即短周期地震动受场地放大影响显著,而长周期部分所受影响较小.
图7通过研究KiK-net同一台站测得的井下与地表的地震动参数的比值,进一步考察放大效应受浅层场地剪切波速vS30的影响,结果表明:对于地震动峰值PGA,PGV和周期为0.2,1和2 s的反应谱,井下与地表的地震动比值有随vS30增大而增大的趋势,这说明浅层场地剪切波速vS30越大,场地放大效应越小;对于周期为3,5和10 s的长周期地震动,井下与地表的地震动比值受浅层场地剪切波速变化的影响小,比值接近于1.
由于选用的KiK-net台站的井下测点所处深度往往有所不同,而相对于井下观测,自由地表本身会对地震波产生一定的放大作用. 将图7中的记录数据按照测井深度分为3组,进一步考察测井深度的影响,结果如图8所示. 可以看出:深度h<150 m和150<h<250 m两组数据的差别不明显,而在测井深度h>250 m时,井下与地表的地震动比值整体上要小于h<150 m和150<h<250 m两组数据,周期为1 s的反应谱值对比结果尤为明显. 这说明,测井深度h<250 m时对地震动放大作用的影响较小,h>250 m时则有一定影响.
图9将近断层的KMMH02,KMMH03,KMMH06和KMMH16这4个台站的地表与井下水平向反应谱进行比较,对比结果进一步验证了图6的结果,即相对于井下记录,地表观测的地震动PGA,PGV和周期为0.2,1和2 s的反应谱有明显的放大效应,而周期为3,5和10 s的长周期地震动的放大作用则很小.
我们利用地表与井下的反应谱比曲线进一步考察场地放大效应的影响,按照场地剪切波速vS30对反应谱比曲线进行分组,图10 给出了分组后每一组的平均谱比曲线,结果表明:场地放大效应的影响在周期T<0.5 s时最为显著,各组的最大谱比值介于3.5—6.0;整体上,随着场地剪切波速vS30的减小(场地卓越周期的增大),场地放大效应的影响向长周期方向移动;在周期T>1 s时,vS30>600 m/s的3组平均谱比曲线的谱比值(地表/井下)接近1.0,而vS30<600 m/s的两组平均谱比曲线显著受到放大作用影响,其中200<vS30<400 m/s这一组的平均谱比曲线在周期1—3 s之间的谱比值超过1.5,这说明场地剪切波速越小,对超过1 s的长周期地震动的放大作用影响越显著.图11按照场地类别进行分组,给出了B,C,D类场地的平均谱比曲线,可以看到,从B类到D类,场地放大作用的影响范围逐渐向长周期方向移动. 图10与图11的结果表明场地放大效应作用受到场地剪切波速(卓越周期)的显著影响,即不同场地的放大效应影响作用于其特定的周期范围,随着场地剪切波速vS30的减小(场地卓越周期的增大),放大效应的影响向长周期方向移动.
当输入地震动超过一定水平(例如PGA>50—100 cm/s2),场地反应往往会出现明显的非线性特征,这主要表现为场地放大系数随输入地震动PGA的增大而减小以及场地卓越周期在强震动作用下增大两个方面(Wenet al,1994 ;Wuet al,2010 ;Ronget al,2016 ). 为了进一步探讨此次熊本地震作用下的场地非线性效应,对近场KMMH02,KMMH03,KMMH06和KMMH16这4个台站记录进行分析,选取包括熊本地震主震在内的5次地震事件(见表3),将同一台站场地分别在强震动(本文取PGA>100 cm/s2)与弱震动(本文取PGA<100 cm/s2)作用下的场地放大效应曲线结果进行比较,结果如图12所示. 可以看到,在强震动作用下放大效应曲线的卓越周期向长周期方向移动,此外强震动作用下地表与井下的放大倍数明显减小,这在场地剪切波速vS30=279.7 m/s的KMMH16台站表现尤为明显.
表 3 对比研究中选取的地震事件Table 3. Earthquakes events chosen for comparison地震事件 发震时间 北纬/° 东经/° 震源深度/km M 年-月-日 时:分 1 2016-04-16 01:25 32.75 130.76 12 7.3 2 2016-04-16 01:46 32.86 130.90 11 5.9 3 2016-04-16 03:03 32.96 131.09 7 5.9 4 2016-04-15 05:10 32.76 130.81 10 4.6 5 2014-08-29 04:14 32.14 132.15 18 6.0 5. 讨论与结论
本文选取日本熊本MW7.0地震中断层距小于200 km的82个KiK-net台站记录到的三分量数据,将获取的井下和地表记录结果与美国NGA-West2的地震动预测模型相比较,研究了熊本地震地表和井下地震动峰值及反应谱的衰减特征,通过比较KiK-net地表与井下的地震动数据,探讨了浅层场地放大效应的影响,主要结论如下:
1) 对于井下观测结果,NGA-West2的地震动模型(取vS30=760 m/s)对PGA和短周期0.2 s的反应谱的预测值整体高于观测值,而对PGV和较长周期地震动(如1,2和3 s的反应谱)的预测值与实际观测值符合得较好,究其原因可能是井下岩石的实际波速较基岩波速760 m/s要高. 另外,NGA-West2的地震动模型是利用基于全球范围内自由地表的强震动记录得到的,不太适合对井下地震动进行经验预测.
2) 基于地表记录的残差分析结果显示,PGA,PGV和周期为0.2—3 s反应谱的残差整体上随vS30对数值的增大而呈线性减小的趋势,这表明场地剪切波速对地表周期为0.2—3 s的地震动反应谱的线性影响特征,而周期为5和10 s的长周期部分,其场地效应的影响很小.
3) 相对于井下记录,地表记录的地震动峰值PGA,PGV和周期为0.2,1和2 s的反应谱有明显的放大,而周期为3,5和10 s的长周期地震动的放大效应很小. 该结果也进一步验证了李小军(2016)场地反应的数值模拟结果,即短周期地震动受场地放大影响显著,而长周期部分所受影响较小. 对于地震动峰值PGA、PGV和周期为0.2,1和2 s的反应谱,浅层场地剪切波速vS30越大,场地放大效应越小.
4) 近场记录观测到了明显的场地非线性反应,相对于弱震动作用的情况,在PGA>100 cm/s2的强震动作用时,放大作用曲线的卓越周期向长周期方向移动,地表与井下地震动的放大倍数显著减小,这在场地剪切波速vS30=279.7 m/s的KMMH16台站表现尤为明显.
由于选用的KiK-net台站的井下测点位于地下的深度有所不同,我们通过分组考察了测井深度对放大作用的影响,结果显示:在测井深度小于250 m时,对放大作用的影响较小;当超过250 m时,测井深度对地震动的放大作用会有一定影响. 通过场地剪切波速vS30地表与井下的反应谱比曲线的影响,发现地表与井下的反应谱比值随周期而显著变化,场地放大作用的影响在周期0.1—0.5 s时最强,最大谱比值介于3.5—6.0;随着场地剪切波速vS30的减小(场地卓越周期的增大),场地放大作用的影响向长周期方向移动,表现出明显的非线性特征. 基于本文的对比研究以及场地数值模拟(李小军,2016)结果,周期超过3 s的地震动受浅层场地的影响很小. 因此,在基岩台站缺少的情况下,利用土层场地的地震动观测结果对基岩地震动的长周期部分进行预测不失为一种有效的替代方法.
日本防灾科学技术研究所(NIED)所属的K-NET和KiK-net台网提供了强震动记录数据,审稿专家为本文的完善提供了意见和建议,作者在此一并表示感谢.
-
图 2 正演模型(表1中所列)的分方位H-κ扫描结果
图中红色箭头为最大梯度方向,红色箭头长度为归一化后的梯度大小。(a) 模型界面水平,界面深度H为60 km;(b) 模型界面倾角θ为10°,H为60 km;(c) 模型界面θ为20°,H为60 km;(d) 模型界面θ为10°,H为50 km
Figure 2. The H-κ stacking result in azimuth for the four forward models listed in Table 1
The red arrow points to maximum gradient,the length of the red arrow represents the size of the normalized gradient. (a) Horizontally interface and interface depth 60 km;(b) Interface with inclination 10° and depth 60 km;(c) Interface with inclination 20° and depth 60 km;(d) Interface with inclination 10° and depth 50 km
图 7 拉萨台站P波接收函数和H-κ平面图
(a) 拉萨台站全部接收函数按方位角5°范围叠加排列;(b) 拉萨台站分方位扫描后的H-κ平面图
Figure 7. P-wave receiver functions beneath LSA station and their H-κ stacking image
(a) All of stacked receiving functions of LSA stations arranged in 5° azimuth bin;(b) The H-κ plan diagram of the LSA station after stacking in azimuth
图 9 拉萨台站下方界面A (a)和B (b)的分方位H-κ扫描投影图
图中红色箭头的方向和长度代表梯度的方向和大小,黑色虚线代表80 km等深线
Figure 9. The projected map of H-κ scanning in azimuth results of interfaces A (a) and B (b) beneath LSA station
The direction and length of the red arrow represents the direction and size of the gradient,the black dashed line represents the 80 km iso-depth contour line
图 11 拉萨台站下方界面模型与层析成像结果对比(引自He et al,2010)
Figure 11. Comparison of subsurface interface model beneath the LSA station with tomographic imaging results (after He et al,2010)
表 1 正演模型参数
Table 1 Forward model parameters
模型编号 界面深度/km 界面倾向 界面倾角/° 各向异性 震中距/° 模型层数 模型参数 vP/(km·s−1) vP/vS a 60 − − − 30,60,90 2 上层
下层6.2
8.11.77
1.77b 60 正东 10 − 30,60,90 2 c 60 正东 20 − 30,60,90 2 d 50 正东 10 − 30,60,90 2 e 50 − − 5% 60 2 f 50,60 正东 10 − 30,90 3 上层
中层
下层6.2
7.1
8.11.77
1.77
1.77 -
常承法. 1980. 雅鲁藏布江蛇绿岩带的新观察资料[J]. 地震地质,2(1):18–89. Chang C F. 1980. Newly observed data in ophiolitic zone along Yarlung Zangbo River,China[J]. Seismology and Geology,2(1):18–89 (in Chinese).
段永红,刘保金,赵金仁,刘保峰,张成科,潘素珍,林吉焱,郭文斌. 2015. 华北构造区岩石圈二维P波速度结构特征:来自盐城—包头深地震测深剖面的约束[J]. 中国科学:地球科学,45(8):1183–1197. Duan Y H,Liu B J,Zhao J R,Liu B F,Zhang C K,Pan S Z,Lin J Y,Guo W B. 2015. 2-D P-wave velocity structure of lithosphere in the North China tectonic zone:Constraints from the Yancheng-Baotou deep seismic profile[J]. Science China Earth Sciences,58(9):1577–1591. doi: 10.1007/s11430-015-5081-y
房立华,吴建平. 2009. 倾斜界面和各向异性介质对接收函数的影响[J]. 地球物理学进展,24(1):42–50. Fang L H,Wu J P. 2009. Effects of dipping boundaries and anisotropic media on receiver functions[J]. Progress in Geophysics,24(1):42–50 (in Chinese).
高锐,熊小松,李秋生,卢占武. 2009. 由地震探测揭示的青藏高原莫霍面深度[J]. 地球学报,30(6):761–773. doi: 10.3321/j.issn:1006-3021.2009.06.008 Gao R,Xiong X S,Li Q S,Lu Z W. 2009. The Moho depth of Qinghai-Tibet Plateau revealed by seismic detection[J]. Acta Geoscientia Sinica,30(6):761–773 (in Chinese).
高星,王卫民,姚振兴. 2005. 中国及邻近地区地壳结构[J]. 地球物理学报,48(3):591–601. doi: 10.3321/j.issn:0001-5733.2005.03.017 Gao X,Wang W M,Yao Z X. 2005. Crustal structure of China mainland and its adjacent regions[J]. Chinese Journal of Geophysics,48(3):591–601 (in Chinese).
侯增谦,郑远川,卢占武,许博,王长明,张洪瑞. 2020. 青藏高原巨厚地壳:生长、加厚与演化[J]. 地质学报,94(10):2797–2815. doi: 10.3969/j.issn.0001-5717.2020.10.001 Hou Z Q,Zheng Y C,Lu Z W,Xu B,Wang C M,Zhang H R. 2020. Growth,thickening and evolution of the thickened crust of the Tibet Plateau[J]. Acta Geologica Sinica,94(10):2797–2815 (in Chinese).
嵇少丞,王茜,杨文采. 2009. 华北克拉通泊松比与地壳厚度的关系及其大地构造意义[J]. 地质学报,83(3):324–330. doi: 10.3321/j.issn:0001-5717.2009.03.002 Ji S C,Wang Q,Yang W C. 2009. Correlation between crustal thickness and Poisson’s ratio in the North China Craton and its implication for lithospheric thinning[J]. Acta Geologica Sinica,83(3):324–330 (in Chinese).
李玮,陈赟,谭萍,袁晓晖. 2020. 大陆深俯冲的深浅动力学响应:来自帕米尔高原地壳精细结构的约束[J]. 中国科学:地球科学,50(5):663–676. Li W,Chen Y,Tan P,Yuan X H. 2020. Geodynamic processes of the continental deep subduction:Constraints from the fine crustal structure beneath the Pamir Plateau[J]. Science China Earth Sciences,63(5):649–661. doi: 10.1007/s11430-019-9587-3
任建业,庞雄,雷超,袁立忠,刘军,杨林龙. 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示[J]. 地学前缘,22(1):102–114. Ren J Y,Pang X,Lei C,Yuan L Z,Liu J,Yang L L. 2015. Ocean and continent transition in passive continental margins and analysis of lithospheric extension and breakup process:Implication for research of the deepwater basins in the continental margins of South China Sea[J]. Earth Science Frontiers,22(1):102–114 (in Chinese).
申婷婷,张立飞,陈晶. 2016. 俯冲带蛇纹岩的变质过程[J]. 岩石学报,32(4):1206–1218. Shen T T,Zhang L F,Chen J. 2016. Metamorphism of subduction zone serpentinite[J]. Acta Petrologica Sinica,32(4):1206–1218 (in Chinese).
谭萍,陈赟,孙维昭,李玮,唐国彬,崔田. 2018. 一种改进的适应于倾斜Moho面的H-κ-θ叠加方法及应用[J]. 地球物理学报,61(9):3689–3700. doi: 10.6038/cjg2018M0032 Tan P,Chen Y,Sun W Z,Li W,Tang G B,Cui T. 2018. An improved H-κ-θ stacking method to determine the crustal thickness and bulk vP/vS ratios in the case of a slant Moho interface[J]. Chinese Journal of Geophysics,61(9):3689–3700 (in Chinese).
滕吉文,曾融生,闫雅芬,张慧. 2002. 东亚大陆及周边海域Moho界面深度分布和基本构造格局[J]. 中国科学(D辑),32(2):89–100. Teng J W,Zeng R S,Yan Y F,Zhang H. 2003. Depth distribution of Moho and tectonic framework in eastern Asian continent and its adjacent ocean areas[J]. Science in China:Series D,46(5):428–446. doi: 10.1360/03yd9038
王成善,李亚林,刘志飞,李祥辉,唐菊兴,Rejean H,Cote D,Varfalvy V,Huot F. 2005. 雅鲁藏布江蛇绿岩再研究:从地质调查到矿物记录[J]. 地质学报,79(3):323–330. doi: 10.3321/j.issn:0001-5717.2005.03.005 Wang C S,Li Y L,Liu Z F,Li X H,Tang J X,Rejean H,Cote D,Varfalvy V,Huot F. 2005. Yarlung-Zangbo ophiolites revisited:From geological survey to mineral records[J]. Acta Geologica Sinica,79(3):323–330 (in Chinese).
危自根,储日升,陈凌,崇加军,李志伟. 2016. 复杂地壳接收函数H-κ叠加:以安纳托利亚板块为例[J]. 地球物理学报,59(11):4048–4062. doi: 10.6038/cjg20161110 Wei Z G,Chu R S,Chen L,Chong J J,Li Z W. 2016. Analysis of H-κ stacking of receiver functions beneath crust with complex structure:Taking the Anatolia Plate as an example[J]. Chinese Journal of Geophysics,59(11):4048–4062 (in Chinese).
许志琴,杨经绥,李文昌,李化启,蔡志慧,闫臻,马昌前. 2013. 青藏高原中的古特提斯体制与增生造山作用[J]. 岩石学报,29(6):1847–1860. Xu Z Q,Yang J S,Li W C,Li H Q,Cai Z H,Yan Z,Ma C Q. 2013. Paleo-Tethys system and accretionary orogen in the Tibet Plateau[J]. Acta Petrologica Sinica,29(6):1847–1860 (in Chinese).
曾融生,孙为国,毛桐恩,林中洋,胡鸿翔,陈光英. 1995. 中国大陆莫霍界面深度图[J]. 地震学报,17(3):322–327. Zeng R S,Sun W G,Mao T N,Lin Z Y,Hu H X,Chen G Y. 1995. The depth map of the Moho across China[J]. Acta Seismologica Sinica,17(3):322–327 (in Chinese).
查小惠,孙长青,李聪. 2013. 倾斜界面和各向异性地层对H-κ搜索结果的影响[J]. 地球物理学进展,28(1):121–131. doi: 10.6038/pg20130113 Zha X H,Sun C Q,Li C. 2013. The effects of dipping interface and anisotropic layer on the result of H-κ method[J]. Progress in Geophysics,28(1):121–131 (in Chinese).
张洪双,田小波,滕吉文. 2009. 接收函数方法估计Moho倾斜地区的地壳速度比[J]. 地球物理学报,52(5):1243–1252. doi: 10.3969/j.issn.0001-5733.2009.05.013 Zhang H S,Tian X B,Teng J W. 2009. Estimation of crustal vP/vS with dipping Moho from receiver functions[J]. Chinese Journal of Geophysics,52(5):1243–1252 (in Chinese).
张洪双,滕吉文,田小波,张中杰,高锐. 2013. 青藏高原东北缘岩石圈厚度与上地幔各向异性[J]. 地球物理学报,56(2):459–471. doi: 10.6038/cjg20130210 Zhang H S,Teng J W,Tian X B,Zhang Z J,Gao R. 2013. Lithospheric thickness and upper mantle anisotropy beneath the northeastern Tibetan Plateau[J]. Chinese Journal of Geophysics,56(2):459–471 (in Chinese).
张万平,袁四化,刘伟. 2011. 青藏高原南部雅鲁藏布江蛇绿岩带的时空分布特征及地质意义[J]. 西北地质,44(1):1–9. doi: 10.3969/j.issn.1009-6248.2011.01.001 Zhang W P,Yuan S H,Liu W. 2011. Distribution and research significance of ophiolite in Brahmaputra Suture Zone,southern Tibet[J]. Northwestern Geology,44(1):1–9 (in Chinese).
Chen Y L,Niu F L,Liu R F,Huang Z B,Tkalčić H,Sun L,Chan W. 2010. Crustal structure beneath China from receiver function analysis[J]. J Geophys Res:Solid Earth,115(B3):B03307.
Christensen N I. 1996. Poisson’s ratio and crustal seismology[J]. J Geophys Res:Solid Earth,101(B2):3139–3156. doi: 10.1029/95JB03446
Christensen N I,Ramananantoandro R. 1971. Elastic moduli and anisotropy of dunite to 10 kilobars[J]. J Geophys Res,76(17):4003–4010. doi: 10.1029/JB076i017p04003
Dong X Y,Li W H,Lu Z W,Huang X F,Gao R. 2020. Seismic reflection imaging of crustal deformation within the eastern Yarlung-Zangbo suture zone[J]. Tectonophysics,780:228395. doi: 10.1016/j.tecto.2020.228395
Dziewonski A M,Anderson D L. 1981. Preliminary reference Earth model[J]. Phys Earth Planet Inter,25(4):297–356. doi: 10.1016/0031-9201(81)90046-7
Frederiksen A W,Bostock M G. 2000. Modelling teleseismic waves in dipping anisotropic structures[J]. Geophys J Int,141(2):401–412. doi: 10.1046/j.1365-246x.2000.00090.x
Gao R,Lu Z W,Klemperer S L,Wang H Y,Dong S W,Li W H,Li H Q. 2016. Crustal-scale duplexing beneath the Yarlung Zangbo suture in the western Himalaya[J]. Nat Geosci,9(7):555–560. doi: 10.1038/ngeo2730
Gilbert F,Dziewonski A M. 1975. An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra[J]. Philos Trans R Soc A:Math Phys Eng Sci,278(1280):187–269.
Girardeau J,Mercier J C C,Yougong Z. 1985. Structure of the Xigaze Ophiolite,Yarlung Zangbo Suture Zone,southern Tibet,China:Genetic implications[J]. Tectonics,4(3):267–288. doi: 10.1029/TC004i003p00267
Guo X Y,Gao R,Zhao J M,Xu X,Lu Z W,Klemperer S L,Liu H B. 2018. Deep-seated lithospheric geometry in revealing collapse of the Tibetan Plateau[J]. Earth-Sci Rev,185:751–762. doi: 10.1016/j.earscirev.2018.07.013
He R Z,Zhao D P,Gao R,Zheng H W. 2010. Tracing the Indian lithospheric mantle beneath central Tibetan Plateau using teleseismic tomography[J]. Tectonophysics,491(1/2/3/4):230–243.
He R Z,Shang X F,Yu C Q,Zhang H J,van der Hilst R D. 2014. A unified map of Moho depth and vP/vS ratio of continental China by receiver function analysis[J]. Geophys J Int,199(3):1910–1918. doi: 10.1093/gji/ggu365
Herrin E. 1968. Introduction to “1968 seismological tables for P phases”[J]. Bull Seismol Soc Am,58(4):1193–1195. doi: 10.1785/BSSA0580041193
Ji S C,Li A W,Wang Q,Long C X,Wang H C,Marcotte D,Salisbury M. 2013. Seismic velocities,anisotropy,and shear-wave splitting of antigorite serpentinites and tectonic implications for subduction zones[J]. J Geophys Res:Solid Earth,118(3):1015–1037. doi: 10.1002/jgrb.50110
Jin S,Sheng Y,Comeau M J,Becken M,Wei W B,Ye G F,Dong H,Zhang L T. 2022. Relationship of the crustal structure,rheology,and tectonic dynamics beneath the Lhasa-Gangdese terrane (Southern Tibet) based on a 3-D electrical model[J]. J Geophys Res:Solid Earth,127(11):e2022JB024318. doi: 10.1029/2022JB024318
Kennett B L N. 1991. Seismic velocity gradients in the upper mantle[J]. Geophys Res Lett,18(6):1115–1118. doi: 10.1029/91GL01340
Kennett B L N,Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int,105(2):429–465. doi: 10.1111/j.1365-246X.1991.tb06724.x
Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the earth from travel-times[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x
Kind R,Kosarev G L,Petersen N V. 1995. Receiver functions at the stations of the German Regional Seismic Network (GRSN)[J]. Geophys J Int,121(1):191–202. doi: 10.1111/j.1365-246X.1995.tb03520.x
Kind R,Yuan X,Saul J,Nelson D,Sobolev S V,Mechie J,Zhao W,Kosarev G,Ni J,Achauer U,Jiang M. 2002. Seismic images of crust and upper mantle beneath Tibet:Evidence for Eurasian Plate subduction[J]. Science,298(5596):1219–1221. doi: 10.1126/science.1078115
Klemperer S L,Zhao P,Whyte C J,Darrah T H,Crossey L J,Karlstrom K E,Liu T Z,Winn C,Hilton D R,Ding L. 2022. Limited underthrusting of India below Tibet:3He/4He analysis of thermal springs locates the mantle suture in continental collision[J]. Proc Natl Acad Sci USA,119(12):e2113877119. doi: 10.1073/pnas.2113877119
Langston C A. 1977. The effect of planar dipping structure on source and receiver responses for constant ray parameter[J]. Bull Seismol Soc Am,67(4):1029–1050.
Li C,van der Hilst R D,Meltzer A S,Engdahl E R. 2008. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J]. Earth Planet Sci Lett,274(1/2):157–168.
Li J T,Song X D,Wang P,Zhu L P. 2019. A generalized H-κ method with harmonic corrections on Ps and its crustal multiples in receiver functions[J]. J Geophys Res:Solid Earth,124(4):3782–3801. doi: 10.1029/2018JB016356
Li Q S,Gao R,Lu Z W,Guan Y,Zhang J S,Li P W,Wang H Y,He R Z,Karplus M. 2009. The thickness and structural characteristics of the crust across Tibetan Plateau from active-sources seismic profiles[J]. Earthq Sci,22(1):21–31. doi: 10.1007/s11589-009-0021-6
Li X,Wei D,Yuan X,Kind R,Kumar P,Zhou H. 2011. Details of the doublet Moho structure beneath Lhasa,Tibet,obtained by comparison of P and S receiver functions[J]. Bull Seismol Soc Am,101(3):1259–1269. doi: 10.1785/0120100163
Li X Q,Yuan X H. 2003. Receiver functions in northeast China:Implications for slab penetration into the lower mantle in northwest Pacific subduction zone[J]. Earth Planet Sci Lett,216(4):679–691. doi: 10.1016/S0012-821X(03)00555-7
Ligorría J P,Ammon C J. 1999. Iterative deconvolution and receiver-function estimation[J]. Bull Seismol Soc Am,89(5):1395–1400. doi: 10.1785/BSSA0890051395
Link F,Rümpker G,Kaviani A. 2020. Simultaneous inversion for crustal thickness and anisotropy by multiphase splitting analysis of receiver functions[J]. Geophys J Int,223(3):2009–2026. doi: 10.1093/gji/ggaa435
Liu Z,Park J. 2017. Seismic receiver function interpretation:Ps splitting or anisotropic underplating?[J]. Geophys J Int,208(3):1332–1341. doi: 10.1093/gji/ggw455
Liu Z,Tian X B,Liang X F,Liang C T,Li X. 2021. Magmatic underplating thickening of the crust of the southern Tibetan Plateau inferred from receiver function analysis[J]. Geophys Res Lett,48(17):e2021GL093754. doi: 10.1029/2021GL093754
Lombardi D,Braunmiller J,Kissling E,Giardini D. 2008. Moho depth and Poisson’s ratio in the western-central Alps from receiver functions[J]. Geophys J Int,173(1):249–264. doi: 10.1111/j.1365-246X.2007.03706.x
Lu Z W,Guo X Y,Gao R,Murphy M A,Huang X F,Xu X,Li S Z,Li W H,Zhao J M,Li C S,Xiang B. 2022. Active construction of southernmost Tibet revealed by deep seismic imaging[J]. Nat Commun,13(1):3143. doi: 10.1038/s41467-022-30887-3
Mitra S,Priestley K,Bhattacharyya A K,Gaur V K. 2004. Crustal structure and earthquake focal depths beneath northeastern India and southern Tibet[J]. Geophys J Int,160(1):227–248. doi: 10.1111/j.1365-246X.2004.02470.x
Morelli A,Dziewonski A M. 1993. Body wave traveltimes and a spherically symmetric P- and S-wave velocity model[J]. Geophys J Int,112(2):178–194. doi: 10.1111/j.1365-246X.1993.tb01448.x
Nábělek J,Hetényi G,Vergne J,Sapkota S,Kafle B,Jiang M,Su H P,Chen J,Huang B S,The Hi-CLIMB Team. 2009. Underplating in the Himalaya-Tibet collision zone revealed by the Hi-CLIMB experiment[J]. Science,325(5946):1371–1374. doi: 10.1126/science.1167719
Nicolas A,Girardeau J,Marcoux J,Dupre B,Wang X B,Cao Y G,Zheng H X,Xiao X C. 1981. The Xigaze ophiolite (Tibet):A peculiar oceanic lithosphere[J]. Nature,294(5840):414–417. doi: 10.1038/294414a0
Niu F L,Bravo T,Pavlis G,Vernon F,Rendon H,Bezada M,Levander A. 2007. Receiver function study of the crustal structure of the southeastern Caribbean Plate boundary and Venezuela[J]. J Geophys Res:Solid Earth,112(B11):B11308.
Priestley K,Jackson J,McKenzie D. 2008. Lithospheric structure and deep earthquakes beneath India,the Himalaya and southern Tibet[J]. Geophys J Int,172(1):345–362. doi: 10.1111/j.1365-246X.2007.03636.x
Schulte-Pelkum V,Mahan K H. 2014. A method for mapping crustal deformation and anisotropy with receiver functions and first results from USArray[J]. Earth Planet Sci Lett,402:221–233. doi: 10.1016/j.jpgl.2014.01.050
Shen X Z,Zhou H L. 2012. Receiver functions of CCDSN and crustal structure of Chinese mainland[J]. Earthq Sci,25(1):3–16. doi: 10.1007/s11589-012-0826-6
Shi D N,Wu Z H,Klemperer S L,Zhao W J,Xue G Q,Su H P. 2015. Receiver function imaging of crustal suture,steep subduction,and mantle wedge in the eastern India-Tibet continental collision zone[J]. Earth Planet Sci Lett,414:6–15. doi: 10.1016/j.jpgl.2014.12.055
Shi D N,Zhao W J,Klemperer S L,Wu Z H,Mechie J,Shi J Y,Xue G Q,Su H P. 2016. West-east transition from underplating to steep subduction in the India-Tibet collision zone revealed by receiver-function profiles[J]. Earth Planet Sci Lett,452:171–177. doi: 10.1016/j.jpgl.2016.07.051
Tang C C,Chen C H,Teng T L. 2008. Receiver functions for three-layer media[J]. Pure Appl Geophys,165(7):1249–1262. doi: 10.1007/s00024-008-0355-3
Tian X B,Zhang Z J. 2013. Bulk crustal properties in NE Tibet and their implications for deformation model[J]. Gondwana Res,24(2):548–559. doi: 10.1016/j.gr.2012.12.024
Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle[J]. Phys Earth Planet Inter,15(1):39–45. doi: 10.1016/0031-9201(77)90008-5
Wang F Y,Song X D,Li J T. 2022. Deep learning-based H-κ method (HkNet) for estimating crustal thickness and vP/vS ratio from receiver functions[J]. J Geophys Res:Solid Earth,127(6):e2022JB023944. doi: 10.1029/2022JB023944
Wang G C,Thybo H,Artemieva I M. 2021. No mafic layer in 80 km thick Tibetan crust[J]. Nat Commun,12(1):1069. doi: 10.1038/s41467-021-21420-z
Wang P,Huang Z C,Wang X C. 2020. A method for estimating the crustal azimuthal anisotropy and Moho orientation simultaneously using receiver functions[J]. J Geophys Res:Solid Earth,125(2):e2019JB018405. doi: 10.1029/2019JB018405
Weber M,Davis J P. 1990. Evidence of a laterally variable lower mantle structure from P-waves and S-waves[J]. Geophys J Int,102(1):231–255. doi: 10.1111/j.1365-246X.1990.tb00544.x
Wei W B,Unsworth M,Jones A,Booker J,Tan H D,Nelson D,Chen L S,Li S H,Solon K,Bedrosian P,Jin S,Deng M,Ledo J,Kay D,Roberts B. 2001. Detection of widespread fluids in the Tibetan crust by magnetotelluric studies[J]. Science,292(5517):716–719. doi: 10.1126/science.1010580
Wittlinger G,Farra V,Hetényi G,Vergne J,Nábělek J. 2009. Seismic velocities in southern Tibet lower crust:A receiver function approach for eclogite detection[J]. Geophys J Int,177(3):1037–1049. doi: 10.1111/j.1365-246X.2008.04084.x
Xiao Z,Fuji N,Iidaka T,Gao Y,Sun X L,Liu Q. 2020. Seismic structure beneath the Tibetan Plateau from iterative finite-frequency tomography based on ChinArray:New insights into the Indo-Asian collision[J]. J Geophys Res:Solid Earth,125(2):e2019JB018344. doi: 10.1029/2019JB018344
Xu Q,Zhao J M,Yuan X H,Liu H B,Pei S P. 2015. Mapping crustal structure beneath southern Tibet:Seismic evidence for continental crustal underthrusting[J]. Gondwana Res,27(4):1487–1493. doi: 10.1016/j.gr.2014.01.006
Xu Q,Zhao J M,Yuan X H,Liu H B,Pei S P. 2017. Detailed configuration of the underthrusting Indian lithosphere beneath western Tibet revealed by receiver function images[J]. J Geophys Res:Solid Earth,122(10):8257–8269. doi: 10.1002/2017JB014490
Yeck W L,Sheehan A F,Schulte-Pelkum V. 2013. Sequential H-κ stacking to obtain accurate crustal thicknesses beneath sedimentary basins[J]. Bull Seismol Soc Am,103(3):2142–2150. doi: 10.1785/0120120290
Yu C Q,Zheng Y C,Shang X F. 2017. Crazyseismic:A MATLAB GUI-based software package for passive seismic data preprocessing[J]. Seismol Res Lett,88(2A):410–415. doi: 10.1785/0220160207
Yu Y Q,Song J G,Liu K H,Gao S S. 2015. Determining crustal structure beneath seismic stations overlying a low-velocity sedimentary layer using receiver functions[J]. J Geophys Res:Solid Earth,120(5):3208–3218. doi: 10.1002/2014JB011610
Yuan X H,Ni J,Kind R,Mechie J,Sandvol E. 1997. Lithospheric and upper mantle structure of southern Tibet from a seismological passive source experiment[J]. J Geophys Res:Solid Earth,102(B12):27491–27500. doi: 10.1029/97JB02379
Zhao J M,Yuan X H,Liu H B,Kumar P,Pei S P,Kind R,Zhang Z J,Teng J W,Ding L,Gao X,Xu Q,Wang W. 2010. The boundary between the Indian and Asian tectonic plates below Tibet[J]. Proc Natl Acad Sci USA,107(25):11229–11233. doi: 10.1073/pnas.1001921107
Zhao W B,Guo Z F,Zheng G D,Pinti D L,Zhang M L,Li J J,Ma L. 2022. Subducting Indian lithosphere controls the deep carbon emission in Lhasa terrane,southern Tibet[J]. J Geophys Res:Solid Earth,127(7):e2022JB024250. doi: 10.1029/2022JB024250
Zhao W J,Nelson K D,Che J,Quo J,Lu D,Wu C,Liu X. 1993. Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J]. Nature,366(6455):557–559. doi: 10.1038/366557a0
Zhu L P,Kanamori H. 2000. Moho depth variation in southern California from teleseismic receiver functions[J]. J Geophys Res:Solid Earth,105(B2):2969–2980. doi: 10.1029/1999JB900322
-
期刊类型引用(5)
1. 徐纪人,李海兵,曾祥芝,许健生,赵志新. 中国井下地震观测研究回顾与展望——从井下到东海深井垂直地震台阵. 地震学报. 2024(06): 919-935 . 本站查看
2. 聂利英,冯江江,林浩然,王康,汪基伟. 基于反应谱衰减关系和理想化反应谱模型的我国规范谱长周期段研究. 地震工程与工程振动. 2022(02): 151-162 . 百度学术
3. 徐纪人,李海兵,曾祥芝,赵志新. 江苏东海深井观测地震波形及其信噪比研究. 地震学报. 2022(06): 1007-1018 . 本站查看
4. 聂利英,王康,林浩然,帅娇娇,汪基伟. PGMD选波时规范反应谱局部场地效应参数研究. 武汉理工大学学报(交通科学与工程版). 2021(04): 743-751 . 百度学术
5. 李瑞山,袁晓铭. 场地放大系数的理论解答. 岩土工程学报. 2019(06): 1066-1073 . 百度学术
其他类型引用(1)