2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震震前地球物理观测异常空间分布机理分析

杨晨艺, 石富强, 季灵运, 杨宜海, 苏利娜, 杨敏, 郑怡

杨晨艺,石富强,季灵运,杨宜海,苏利娜,杨敏,郑怡. 2024. 2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震震前地球物理观测异常空间分布机理分析. 地震学报,46(2):307−326. DOI: 10.11939/jass.20230118
引用本文: 杨晨艺,石富强,季灵运,杨宜海,苏利娜,杨敏,郑怡. 2024. 2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震震前地球物理观测异常空间分布机理分析. 地震学报,46(2):307−326. DOI: 10.11939/jass.20230118
Yang C Y,Shi F Q,Ji L Y,Yang Y H,Su L N,Yang M,Zheng Y. 2024. Mechanism analysis of spatial distribution of the geophysical observation anomalies before the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake. Acta Seismologica Sinica46(2):307−326. DOI: 10.11939/jass.20230118
Citation: Yang C Y,Shi F Q,Ji L Y,Yang Y H,Su L N,Yang M,Zheng Y. 2024. Mechanism analysis of spatial distribution of the geophysical observation anomalies before the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake. Acta Seismologica Sinica46(2):307−326. DOI: 10.11939/jass.20230118

2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震震前地球物理观测异常空间分布机理分析

基金项目: 2023年度震情跟踪定向工作任务(2023010502)、地震预测开放基金(XH24012D)和2024年国家自然科学基金(42304004)共同资助
详细信息
    作者简介:

    杨晨艺,硕士,高级工程师,主要从事地震预报和地震地质研究,e-mail:ycy19891228@126.com

    通讯作者:

    石富强,博士,高级工程师,主要从事断层应力模拟和地震综合预测研究,e-mail:shifuqiang121@163.com

  • 中图分类号: P315.72

Mechanism analysis of spatial distribution of the geophysical observation anomalies before the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake

  • 摘要:

    对甘东南地区2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震震前地球物理观测异常特征进行总结梳理。根据活动构造单元对地球物理观测台站进行区域划分,统计了相关构造单元上异常的数量和百分比,以及不同学科震前异常数量、百分比、异常持续时间等特征,并对异常的空间分布和机理进行分析,讨论了活动构造对异常分布的影响、异常强度与震源机制及断层应力之间的关系。结果表明:① 2013年岷县漳县MS6.6地震比2017年九寨沟MS7.0地震震前地球物理观测异常百分比高,两次地震的震前电磁异常和跨断层水准测量异常均较为显著,而流体异常不明显;② 震前地球物理观测异常分布与活动构造相关,2013年岷县漳县MS6.6地震震前异常主要集中在东昆仑—西秦岭断裂带和六盘山—海原断裂带,2017年九寨沟MS7.0地震震前异常则主要集中在龙门山断裂带和东昆仑—西秦岭断裂带;③ 两次地震震前地球物理观测异常分布均与GNSS速度场分布特征有较好的对应关系;④ 安德森断层应力模式解释了2013年岷县漳县MS6.6地震(逆冲型)比2017年九寨沟MS7.0地震(走滑型)的形成需要更多的应力积累,因此2013年岷县漳县MS6.6地震虽然震级较小但震前异常更显著。

    Abstract:

    The 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake are typical moderate-strong earthquakes developed in the southeast of Gansu Province in recent years. In order to further discuss the common characteristics of geophysical anomalies before earthquakes in this area, the two earthquakes are taken as the research objects in this paper. Based on the published data, it is concluded that there are obvious geophysical anomalies before the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake, including crustal deformation (fixed-station and cross-fault leveling), electromagnetism and underground fluid. Among them, there are 49 precursory anomalies of the 2013 Minxian-Zhangxian MS6.6 earthquake and 34 precursory anomalies of the 2017 Jiuzhaigou MS7.0 earthquake. Meanwhile, the number of precursory anomalies in different disciplines are calculated and the regulations of precursory anomalies in different disciplines are summarized. Besides, the geophysical observation stations are divided according to active fault zones, and the number and percentage of precursory anomalies on relevant fault zones are counted to analyze the precursory anomalies controlled by active tectonics, which has been compared with GNSS velocity field. We also adopt Anderson fault stress model to discuss the different spatial distribution and intensity of precursory anomalies between these two earthquakes, as well as the focal mechanism effect on precursory anomalies in depth. According to the above, the following understandings are obtained:

    1) Through the comparison of the two earthquakes, the precursory anomalies of cross-fault leveling and electro-magnetism of the 2013 Minxian-Zhangxian MS6.6 earthquake are more obvious, with the respective anomaly percentages 35% and 28%, followed by fixed-station deformation and underground fluid anomalies, the anomaly percentages are 21% and 15%, respectively. While the electromagnetic anomalies of the 2017 Jiuzhaigou MS7.0 earthquake are significant, with an anomaly percentage of 45%, followed by the cross-fault leveling and fixed-station deformation, with an anomaly percentage of 26%. While the underground fluid anomalies are the least, with an anomaly percentage of only 5%. Summarized from the above data, the geophysical anomalies before the 2013 Minxian-Zhangxian MS6.6 earthquake are more significant than these of the 2017 Jiuzhaigou MS7.0 earthquake. And precursory anomalies of the two earthquakes both reflect that the electromagnetic and cross-fault leveling anomalies are more obvious, while the underground fluid precursory anomalies are rare.

    2) The distribution of geophysical anomalies before the earthquake is related to the active tectonics. Specifically, the precursory anomalies before the 2013 Minxian-Zhangxian MS6.6 earthquake are mainly concentrated in the east Kunlun-west Qinling fault zone and the Liupanshan-Haiyuan fault zone, while the precursory anomalies before the 2017 Jiuzhaigou MS7.0 earthquake are mainly concentrated in the Longmenshan fault zone and the east Kunlun-west Qinling fault zone. The east Kunlun-west Qinling fault zone, which is located in the boundary structure of the Bayan Har block, the Longxi block and the Qaidam basin, has significant precursory anomalies before these two earthquakes, indicating that as an active structure of the central orogenic belt, it plays an important role in the stress conduction of the present extension of the Qinghai-Xizang Plateau.

    3) There is a good correspondence between the distribution of precursory anomalies before the two earthquakes and the GNSS velocity field. The GNSS velocity field is the direct manifestation of the current crustal movement and fault activity. The corresponding relationship between the GNSS velocity field and the precursory anomalies distribution further proves the difference in seismogenic tectonic setting between these two earthquakes, and helps to analyze the stress accumulation before the earthquakes, as well as the energy conduction in seismogenic process.

    4) The stress mechanism of the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake are analyzed based on the Anderson fault stress model, which indicates that shear stress (corresponding to strike-slip fault) is more likely to form fault rupture than normal stress (corresponding to reverse fault), and this viewpoint is supported by rock test laboratory results: an increase in shear stress at the fault plane along the direction of fault slip makes the fault more likely to rupture, while an increase in normal stress (pressure) at the vertical fault plane increases the friction strength of the fault and inhibits rupture. Therefore, although the magnitude of the 2013 Minxian-Zhangxian MS6.6 earthquake (thrust type) is slightly smaller than the 2017 Jiuzhaigou MS7.0 earthquake (strike-slip type), it needs to accumulate more stress to rupture, showing a higher intensity of precursory anomalies.

    This study summarizes the precursory anomalies regulation of two typical earthquakes in the southeast of Gansu Province, which attributes to accumulate earthquake cases data for the establishment of prediction practice in this area.

  • 据中国地震台网中心测定,北京时间2017年8月9日7时27分新疆维吾尔自治区博尔塔拉州精河县发生MS6.6地震,震中位于(44.27°N,82.85°E),震源深度为11 km。本次地震虽然未造成人员伤亡,但该地震的深度较浅,震感较强,最大烈度达到Ⅷ度,等烈度线长轴近EW方向(常想德等,2017)。姜祥华等(2017)基于地震序列的衰减特征以及G-R关系图的分析结果显示本次地震为主余型地震。

    精河地震震源区附近的主要断裂为库松木楔克山前断裂(图1)。陈建波等(2007)认为,库松木楔克山前断裂是发育在天山推覆体前缘的褶皱-逆断裂带上的一条全新世活动断层,其东段由4条走向为280°—290°且向南倾斜的逆断层组成。沈军等(2011)的研究结果显示,该断层为伊犁盆地北部山脉的北缘断裂,呈向北突出的弧形,沿该断裂发育有新生代背斜,切割了晚更新世山前洪积扇和河流阶地,显示出强烈的晚更新世和全新世活动,沿断裂可见古地震遗迹。

    图  1  精河地震震源区及邻区构造背景
    Figure  1.  Tectonic settings of the source region of Jinghe earthquake and its neighbouring areas

    新疆地区是挤压环境下再生造山断块和盆地再生断块发育区,以活动逆断裂-褶皱带为主(邓起东等,2000)。在印度板块与欧亚板块碰撞的强烈挤压作用下,天山南、北麓发育大型逆冲推覆构造,同时造成大量的逆冲断裂。由于挤压运动产生的不均匀水平剪切力,山体内部还发育大量逆冲走滑断裂(沈军等,2003)。历史上在震源区附近发生的地震也多为逆冲兼走滑型。

    近年来,该地区发生的最大地震为2011年10月16日MS5.0地震,而在2017年8月9日又发生了MS6.6地震。为了进一步确定该区域的断层活动情况,本文拟通过对精河MS6.6地震余震序列的精定位以及主震和小震震源机制解反演来确定该地震的发震构造和该地区的应力状态,探索本次地震的发震机理及构造意义。

    本文采用双差定位方法对精河地震的余震序列进行精定位。该方法主要是使用同一台站记录到的发震位置相近的事件的走时残差,获得相对的事件位置,以此来重新确定震源的位置,其基本方程为(Waldhauser,Ellsworth,2000

    $ \Delta {t_{jk}} {\text{-}} \Delta {t_{ik}} {\text{=}} {\text{-}} {{ S}_{jk}}\Delta {{ X}_j}{ {\text{+}} }{{ S}_{ik}}\Delta {{ X}_i} {\text{+}} {\varepsilon _{jk}} {\text{-}} {\varepsilon _{ik}}{\text{,}} $

    (1)

    式中:Δtjk和Δtik分别为地震ij到台站k的到时残差,XiXj分别为两个震源的位置矢量,SikSjk为两次地震震中到台站k的地震射线的慢度矢量,εikεjk分别为两台站拾取到时的误差。该方法能够尽可能地消除速度模型的不确定性所造成的误差,以及震相到时拾取所造成的误差(陈晨,胥颐,2013)。

    本文选用中国地震台网中心发布的2017年8月9日至9月30日新疆精河地区的震相数据。在这一时段内共发生400多次余震。除了使用固定台站记录到的数据外,还使用了震后震源区临时架设的流动台站的数据,台站分布如图2所示。这样,总共记录到4万9 654条P波到时和4万2 638条S波到时。考虑到震源区位于北天山西段,所以定位时使用天山造山带的速度结构模型(邵学钟等,1996),具体见表1;P波与S波的速度比设为1.73。由于P波到时的拾取精度相对于S波较为精确,故将P波和S波的权重分别设为1.0和0.5。重新定位时,设置地震事件到台站的最大距离不超过200 km,事件对的最大距离为10 km,以减小由于速度模型不准确而导致的误差。之后建立事件对,用共轭梯度法计算余震位置。

    图  2  精河MS6.6地震震中及台站分布
    Figure  2.  Epicenter location of Jinghe MS6.6 earthquake and stations distribution
    表  1  速度结构(邵学钟等,1996
    Table  1.  Velocity structure (after Shao et al,1996
    地层深度/kmvP/(km·s−1vS/(km·s−1
    0—44.002.31
    4—165.813.36
    16—256.103.53
    25—346.653.84
    34—456.833.95
    >458.094.68
    下载: 导出CSV 
    | 显示表格

    首先采用NonLinLoc程序(Lomax et al,2001)进行绝对定位,然后进行双差定位,最终得到310个地震事件的精定位结果。图3展示了各事件相对定位前后的误差,可以看出:相对定位之前的均方根误差为0.15 s,重定位后的均方根误差降至0.05 s;经过重定位之后,单个地震事件的均方根误差介于0—0.16之间,峰值位于0.08 s附近,均方根误差小于0.15 s的地震事件占地震总数目的95%,表明重定位所获地震的精度得到了显著的提高。重定位后,主震震中位于(44.27°N,82.85°E),震源深度为17 km。

    图  3  重定位前(a)、后(b)的走时均方根误差
    Figure  3.  RMS error of travel time before (a) and after (b) relocation

    图4图5a分别给出了精定位前、后的地震事件平面分布,可以清楚地看到:定位之前地震事件弥散在整个断层周围,而精定位之后余震分布相对集中在断层附近;主震位于库松木楔克山前断裂的北侧东部断点以东30 km处,精定位后的主震与余震序列的连线方向与余震序列走向相一致,均近EW方向,这与库松木楔克山前断裂的走向一致;余震序列分布在主震的西侧,由图5b可以看出本次地震使得该断裂向东延伸了25 km。

    图  4  精河MS6.6地震序列重定位前的震中分布
    Figure  4.  Epicentral distribution of Jinghe MS6.6 earthquake sequence before relocation
    图  5  精定位后事件分布的剖面图
    (a) 精定位后地震震中分布图;(b) 沿着断层走向的剖面图;(c) 沿垂直于断层走向的剖面图
    Figure  5.  Cross sections of the relocated earthquakes
    (a) Distribution of epicenters after precise locating;(b) The section along the strike of the fault;(c) The profile along the direction perpendicular to the fault

    为了研究发震断层的产状和余震深度的分布情况,本文给出了余震序列的震中分布及其在特定剖面上的投影,如图5所示,图中所示的投影事件在10 km深度以内。从沿着断层走向和余震序列优势方向的BB′剖面(图5b)中能够看到,精定位之后的事件呈条带状分布,深度分布于4—18 km之间,其中5 km深度以内的余震分布较少,余震大部分处于10 km深度附近,表明破裂并未延伸至地表;主震在余震序列东侧,在发震后的4天内余震均发生在主震的西侧,由此说明本次地震的破裂是向西延伸的单侧破裂。从图5c中还可以看出:震源深度由南到北变浅,有明显的南倾趋势,倾角大致为45°,与库松木楔克山前断裂的倾角一致;主震位于余震序列的深部,余震多发生在断层上盘,表现出明显的挤压作用下的逆冲性质。综上,初步判断库松木楔克山前断裂为本次地震的发震构造。

    由于精河震中附近的台站分布较为稀疏,且该地区的速度结构等相关信息较少,因此采用CAP (cut and paste)方法(Zhu,Helmberger,1996)来反演精河地震的主震震源机制解。CAP方法主要是将宽频带记录的波形分为体波和面波,分别计算理论地震图和实际地震图的误差函数,再进行网格空间搜索得到震源机制解、震源深度及矩震级(谢祖军等,2013)。此外,该方法所需台站较少,对速度结构的依赖性不高(郑勇等,2009),因此本文选用该方法来反演精河主震的震源机制解。

    考虑到近台会出现限幅,本文选取距离主震80—300 km范围以内的固定台站(图2中红色三角形所示)所记录到的资料。首先对选取资料进行预处理,然后挑选其中波形完整且能准确识别震相却不出现限幅现象的波形资料进行反演。反演中,体波的滤波频率介于0.05—0.15 Hz之间,面波频率介于0.05—0.1 Hz之间,截取相应的波形窗长为30 s和70 s。断层走向、倾角、滑动角的搜索步长均为5°,深度的搜索步长为1 km。

    图6展示了使用CAP方法反演得到的精河主震的震源机制解结果,可以看到各台站波形的拟合度均超过80%,拟合效果较好。图7给出了各深度下的拟合差,可见:CAP反演得到本次地震的矩心深度为17.2 km;最佳双力偶对应的节面Ⅰ的走向、倾角和滑动角分别为260°,51°和84°,节面Ⅱ的走向、倾角和滑动角分别为89.5°,39.4°和97.4°;断层走向近EW向,震源机制解表明本次地震为逆断类型。表2列出了多个研究机构给出的精河主震的震源机制解,可见除了GCMT (2017)之外,中国地震局地球物理研究所(2017)中国地震台网中心(2017)USGS (2017)的结果显示该地震的走向处于265°±5°之间,倾角处于40°±10°之间,而滑动角大部分近于80°。不同机构给出的结果不同,可能是由于反演所用的台站分布不同,亦或是所采用的速度结构模型和搜索步长不同所导致(吕坚等,2013)。各机构给出的震源深度结果也有差异,USGS和GCMT由于缺乏近台约束,其给出的矩心深度结果存在一定的误差(易桂喜等,2017)。USGS使用较远台站的长周期体波资料反演震源机制解,而GCMT采用地幔波反演矩心深度,USGS较GCMT相比所使用的波长更短,所以USGS的矩心深度分辨率大于GCMT (高原等,1997)。综合所有机构给出的结果确定本次地震的矩心深度约为20 km,主震的发震断层走向为近EW向,倾角为40°—50°,震源类型为逆断类型。

    图  6  2017年8月9号精河主震的CAP反演震源机制解结果
    红线表示理论地震波形,黑线表示观测地震波形,波形下方第一行数字表示理论波形相对实际观测波形的时移(单位:s),第二行数字表示两波形的相关系数;波形左侧为台站名及震中距(单位:km)
    Figure  6.  Focal mechanism solution results of Jinghe earthquake on August 9,2017 by the CAP method
    The red curves represent the theoretical waveforms,and the black ones represent the observed waveforms. The numbers of the first line below the waveforms are the time shift (in s) of theoretical waveforms relative to observed ones,and the positive values indi-cate the theoretical waveform being ahead of the observed one. The numbers of the second line indicate the correlative coefficients between them. The name of stations and corresponding epicentral distances (in km) are given at the left side of waveforms
    图  7  精河地震的拟合差和震源机制解(下半球投影)随矩心深度的变化
    震源球上方数字表示各个深度的拟合矩震级
    Figure  7.  Misfit plots as a function of centroid depth for Jinghe earthquake (lower-hemisphere projection)
    The numbers above the beach balls represent the fitting moment magnitude for each depth
    表  2  2017年8月9日精河MS6.6主震震源机制解结果对比
    Table  2.  Comparison of focal mechanism solutions of Jinghe MS6.6 main shock on August 9,2017
    来源MW矩心深度/km走向/°倾角/°滑动角/°
    USGS (2017)6.3202693087
    GCMT (2017)6.327.82445266
    中国地震局地球物理研究所 (2017)6.25202624580
    中国地震台网中心 (2017)6.3232694799
    本文6.15172605184
    下载: 导出CSV 
    | 显示表格

    求解小震震源机制解主要使用P波初动信息进行反演,如HASH方法(Hardebeck,Shearer,2002)、振幅比方法(Godano et al,2014),但是由于这些方法需要理想的台站分布以及较长的求解时间,因此这些方法并不能可靠地求解大规模小震的震源机制解。

    前文求解主震震源机制解所用的CAP方法适用震级范围的下限为M3.0左右,对M<3.0的地震,由于高频段格林函数的不确定性和小震释放的能量较微弱,求解结果的可靠性很低。因此,本文选用广义极性振幅技术(generalized polarization amplitude technology,简写为GPAT)进行反演(严川,2015)。这种方法不仅考虑到P波的初动极性信息,还利用了最大振幅的极性,而且这里的最大振幅不再局限于P波还是S波,只要为最大振幅就可使用其极性,并把观测位移场与合成位移场的一致性作为目标函数进行反演。

    为了验证广义极性振幅技术方法所得结果的可靠性,本文使用CAP和GPAT方法同时反演了2017年9月9日发生的一次ML4.3地震。震源机制解反演时,选择震中距小于400 km的台站,一些距离震中较近的台站,仅使用体波进行拟合,而未用面波。体波和面波的截取时间窗长度分别为35 s和70 s,相应的带通滤波带宽范围为0.05—0.1 Hz和0.05—0.15 Hz。验证所采用的震例是主震发生后的一次ML4.3地震,所使用速度模型均为表1所列,台站为图2所示固定台站。

    使用GPAT反演时,本文选用相同的台站数据进行初动标识,震源机制解结果列于表3第一行。与CAP反演结果(表3第二行)相比,走向、倾角、滑动角相差不到10°,但是在矩心深度上相差较大:CAP得到的最佳矩心深度为18 km,而GPAT得到的深度为14 km。CAP反演通过Pnl波中sPmP、sPn等深度震相进行拟合,并用面波进行约束,因此得到的矩心深度较为可靠(罗艳等,2015);而GPAT则更多依赖于初始的发震位置,所以本文仅采用GPAT反演得到的走向、倾角、滑动角,深度则使用精定位后所得到的余震序列深度。

    表  3  使用GPAT和CAP方法所得2017年9月9日ML4.3地震反演结果的对比
    Table  3.  Comparison of inversion results for the ML4.3 earthquake on September 9,2017 by using GPAT and CAP methods
    反演方法节面Ⅰ节面Ⅱ短心深度/km
    走向/°倾角/°滑动角/°走向/°倾角/°滑动角/°
    GPAT28141731235110414
    CAP2794483108.74696.718
    下载: 导出CSV 
    | 显示表格

    基于GPAT方法反演时,我们使用的数据不仅包括固定台站的数据,还加入了震后临时架设在震源区附近的短周期流动台站(图2中空心三角形所示)记录到的数据,反演所用的速度结构模型与精定位采用的模型(表1)相一致。最终共挑选了信噪比较高且P波初动较为清晰的60个ML1.5—4.3事件参与反演。图8为部分ML>3.0事件的震源机制解平面分布图,可见:余震基本为逆冲型地震,兼有少量走滑分量,大部分余震的震源机制解与主震相似,具体震源机制解如表4中黑体数字所示,表4列出了反演所得的所有事件的震源机制解。

    图  8  精河地震序列中ML>3.0事件的震源机制解
    Figure  8.  Focal mechanism solutions for the ML>3.0 events of Jinghe earthquake sequence
    表  4  2017年8月9日精河地震余震的震源机制解
    Table  4.  Focal mechanism solutions for the aftershocks of Jinghe earthquake on August 9,2017
    事件震中位置深度
    /km
    ML节面ⅠPT
    东经/°北纬/°走向/°倾角/°滑动角/°方位角/°倾角/°方位角/°倾角/°
    182.6144.2913.04.1270.344.193.1178.10.9−68.387.6
    282.7444.318.03.5258.337.088.7169.28.0−5.182.0
    382.7844.217.03.1332.053.0157.3210.018.0310.040.0
    482.6544.268.03.1230.289.013.04.38.495.89.9
    582.7444.325.03.0240.081.090.2−30.236.0150.254.0
    682.8544.306.03.8234.080.0−18.0−170.419.8−78.55.3
    782.6544.2511.03.0321.032.090.0−129.013.051.077.0
    882.7644.2511.02.5223.058.39.4179.515.980.828.0
    982.7444.2511.03.8285.615.0−37.3−52.152.6152.334.9
    1082.6844.248.03.1251.456.171.7−5.69.4115.172.1
    1182.6444.2612.02.7221.043.0131.0103.08.8−150.261.8
    1282.7344.287.02.5286.79.1173.6121.843.3−76.145.3
    1382.7144.2412.02.2211.062.0−9.0171.725.475.113.6
    1482.7544.2912.02.5280.638.03.2−112.932.2130.435.6
    1582.7144.2915.03.9227.564.3109.8−57.017.0172.065.0
    1682.6744.287.01.8284.320.270.5−150.525.746.163.4
    1782.6944.276.01.7315.645.5−103.1143.380.7−125.20.3
    1882.8944.108.01.8210.539.3−76.3−122.979.2110.86.4
    1982.5744.266.02.1294.650.9144.2169.37.2−92.150.1
    2082.7544.2912.03.1270.240.564.8−162.17.085.072.4
    2182.8744.298.03.6270.957.1−138.2123.551.232.70.7
    2282.7144.2413.01.6305.626.8157.4166.330.6−61.148.9
    2382.7344.2811.01.5232.479.1−172.996.412.7−173.02.7
    2482.7544.2710.01.6218.186.164.3−29.636.0103.343.1
    2582.6944.3111.01.5257.559.163.26.410.3119.164.8
    2682.7044.298.02.1290.178.4145.2−16.814.7−116.432.5
    2782.7244.2813.02.9279.841.9118.3170.16.3−81.770.4
    2882.6044.2911.02.3233.073.438.9−2.612.998.038.9
    2982.4044.109.03.0259.649.647.6−161.93.5102.458.9
    3082.7744.297.03.2272.049.8−139.2116.354.0−145.45.9
    3182.7744.296.03.6282.840.395.9169.327.8−48.356.4
    3282.7744.2911.04.0183.068.093.0−89.322.998.466.9
    3382.7744.297.03.1286.853.9−120.7137.465.238.04.3
    3482.7844.198.02.6235.682.419.28.07.9100.718.9
    3582.7244.2918.03.7277.144.4122.9164.45.2−93.367.0
    3682.9644.3414.01.8268.340.040.0122.2155.99.0−91.0
    3782.7044.306.02.0279.849.2108.3−3.02.6−103.776.0
    3882.5944.256.03.0263.332.772.4−174.013.442.473.6
    3982.3444.2611.01.8244.461.343.35.54.9−101.449.9
    4082.7144.3211.02.0227.415.037.3−179.334.925.152.6
    4182.4144.149.02.1231.085.097.0−45.539.6148.649.5
    4282.6744.2517.04.3277.224.929.6−127.829.695.452.0
    4382.7144.2917.01.4246.426.765.0175.020.125.966.9
    4482.6644.2612.02.4261.055.065.18.56.9116.468.6
    4582.7044.325.01.6261.951.0−164.5114.236.3−142.617.3
    4682.6844.2311.02.0260.348.257.5−167.41.599.166.3
    4782.4743.586.01.8184.640.0176.939.131.1153.634.5
    4882.6544.278.01.9253.750.057.0−173.6096.365.3
    4982.9444.3311.02.0276.274.8120.8−17.123.6−139.150.5
    5083.3244.288.02.1286.437.2−163.3127.843.3−114.626.1
    5183.3544.2817.03.8290.032.779.0−152.012.754.775.9
    5283.1344.345.02.1237.480.350.0−2.724.2110.540.9
    5382.9944.316.01.7278.445.5103.1179.20.3−89.380.7
    5482.7344.2910.02.4281.952.769.226.55.6134.772.6
    5582.4944.2611.02.3309.545.2117.6−159.73.1−60.970.5
    5682.7544.2816.02.0334.439.6126.1−140.710.4−27.065.4
    5782.8343.499.03.7272.846.187.14.91.1121.887.7
      注:表中黑体数字为精河地震序列中部分 ML>3.0余震及其震源机制解。
    下载: 导出CSV 
    | 显示表格

    图9 统计了反演得到的所有余震震源机制解的走向、倾角和滑动角的玫瑰花图,可见:节面的走向集中在近EW向这一优势方向以及SW向这一次优势方向,倾角均值大约为50°,表明发震断层为东西走向、倾角为50°的逆断层,这与主震的震源机制解结果相一致。

    图  9  精河地震序列的节面走向(a)、倾角(b)、滑动角(c)玫瑰花图
    Figure  9.  Rose maps of the strike (a),dip (b) and rake (c) of nodal planes for the Jinghe earthquake sequence

    中小地震的震源参数通常具有很大的不确定性,但是大量离散分布的数据可以约束应力张量方向(Hardebeck,Michael,2006)。同样,Aki (1966)以及陈运泰和顾鼎浩(2007)认为对反演大量震源机制解得到的P轴和T轴方向进行统计平均可以获得该地区的构造应力场情况。图10展示了P轴和T轴的方位角和倾角,可知,P轴方向主要集中在NS向,倾角均值为28°左右。崔效锋等(2005)根据应力倾角大小划分发震类型,当P轴倾角介于20°—35°时,其发震类型以逆断为主兼有走滑。考虑到P轴优势方位与该区域的现代构造应力场相一致(许忠淮等,1989),结合震源区构造背景及应力情况,本文推测本次精河地震是由于印度板块向北运动,与欧亚板块发生碰撞挤压,导致震源区的应力累积到一定程度而使介质发生破裂的结果。

    图  10  精河地震序列P轴(左)和T轴(右)的方位角(a)和倾角(b)的玫瑰花图
    Figure  10.  Rose maps of the azimuth (a) and plunge (b) of P-axis (left panels) and T-axis (right panels) for the Jinghe earthquake sequence

    本文得到的精河地震余震的震源机制解与主震相类似,而这一现象并不是仅在本次地震才出现。对于2013年芦山地震,通过计算共得到114次ML>3.0余震的震源机制解,对其进行统计,结果显示所得平均结果与主震相类似,反映了余震活动主要受龙门山断裂带所在区域应力场的控制;此外,芦山地震余震的震源机制解出现了随时间紊乱的现象,这可能反映了震源区的应力调整过程(张致伟等,2015)。2017年九寨沟地震的13次ML≥4.0余震的震源机制解同样与主震的震源机制解相一致,而该地区受到的NE方向的主压应力方向也与该区域的构造应力场方向一致(易桂喜等,2017)。精河地震ML>3.0余震的震源机制解与主震相类似,震源机制解中的走向近EW向,倾角大约45°,主要以逆冲类型地震为主,这说明余震发生在与主震一致的主破裂面上(魏柏林,1980)。鉴于震源机制解得到的P轴方向与区域构造应力场方向相同,均为近NS向,再结合前面的研究工作可知,本次地震的余震活动主要是受到区域应力场的控制。除了与主震一致的震源机制解外,由余震震中分布图(图5a)和震源机制解的节面走向(图9)还可看到,除EW向的优势断裂方向之外,还存在近SW向的次级优势方向断裂。根据岩石破裂的最大剪切应力理论,结合地质条件,最大主应力轴与破裂面之间会有20°—25°的夹角(陈运泰,顾浩鼎,2007)。本次余震序列的水平分布和余震震源机制解走向均存在SW方向的次级断裂方向。考虑到精河地震震源区的最大主压应力近NS向,所以除了优势方向之外,还在NS方向附近的次优势方向SW方向上发生了破裂。再有,中小地震的发生存在随机性,由于主震的发生使得震源区应力进行了调整,并且余震的发生不仅由区域构造应力场控制,还与震源区的局部构造应力场有关。综合以上因素,余震的震源机制解呈现复杂性,即本次地震的余震除了逆冲类型,还存在其它类型的地震。

    本文基于中国地震台网中心的震相资料及震后布设的流动台站资料使用双差定位法对精河地震的余震序列进行了精定位,重定位之后主震的震中位于(44.27°N,82.85°E),震源深度为17 km,主震震中位于余震序列东侧,余震主要分布在3—18 km深度范围内。余震序列的优势方向与余震序列和主震连线方向一致,且均与库松木楔克山前断裂的走向一致。由垂直断层面投影的余震序列剖面图可以看出,存在断层面南倾、倾角大致为45°的断层面,结合等烈度线初步认为,本次地震的发震构造为库松木楔克山前断裂,而且本次地震使得该断裂向东扩展了30 km。

    使用CAP反演得到的主震震源机解制显示走向为260°,倾角为51°,滑动角为84°;使用GPAT反演得到的大量余震震源机制解的统计平均结果与反演得到的主震震源机制解相近。震源机制解的走向近EW向,与余震序列的优势方向一致,倾角与剖面图得到的结果相吻合。震源类型为逆冲型,与库松木楔克山前断裂的性质相一致,因此更加印证了该断裂为本次精河地震的发震构造,这与徐志国等(2019)对该地震发震构造的研究结果相一致。

    本文统计平均得到震源区的P轴方向为185.6°,近NS向,倾角为28°,P轴方向与现代构造应力场方向一致。结合主震震源机制解、余震序列精定位和余震的震源机制解可知,精河地震是由于印度板块向北挤压欧亚板块造成近EW向的库松木楔克山前断裂发生破裂而导致的逆冲型地震。由于区域构造应力场的作用,大部分余震的震源机制解与主震相一致。但是,局部应力场和震源区构造环境的复杂性,以及主震所在岩体对附近岩块所产生的转换应力而引起的剪切破裂(魏柏林,1980)等因素导致了余震震源机制解的复杂性。

    中国地震台网中心提供了震相数据,新疆地震局提供了震源区烈度图,中国地震局地球物理研究所严川博士提供了GPAT程序,防灾科技学院万永革教授提供了基于小震分布和区域应力场确定大震断层面参数方法的相关程序,美国圣路易斯大学朱露培教授提供了CAP程序,哥伦比亚大学Waldhauser教授提供了双差定位程序,部分图件采用GMT软件绘制,作者在此一并表示衷心的感谢。

  • 图  1   2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震构造背景及周邻地震分布

    图中主要断层根据袁道阳等(2004)、徐锡伟等(2008)和郑文俊等(2013b)绘制,下同

    Figure  1.   Tectonic background and surrounding earthquake distribution of the 2013 Minxian-Zhangxian MS6.6 earthquake and 2017 Jiuzhaigou MS7.0 earthquake

    The fault data are from Yuan et al2004),Xu et al2008)and Zheng et al2013b),the same below

    图  2   2013年岷县漳县MS6.6地震(a)和2017年九寨沟MS7.0地震(b)的地球物理观测异常分布与活动构造单元关系图

    图内的蓝色区域为龙门山断裂带,橙色区域为东昆仑—西秦岭断裂带,绿色区域为六盘山—海原断裂带,紫色区域为渭河断陷带,黄色区域为鲜水河—安宁河断裂带,红色区域为发震构造及相邻断裂带。灰色站点震前无异常发生,彩色站点震前出现异常,不同颜色指示震前异常持续时间不同,下同

    Figure  2.   Relationship between distribution of geophysical precursory anomalies and active tectonics for the 2013 Minxian-Zhangxian MS6.6 earthquake (a) and the 2017 Jiuzhaigou MS7.0 earthquake (b)

    The blue area is Longmenshan fault zone,the orange area is east Kunlun-west Qinling fault zone,the green area is Liupanshan-Haiyuan fault zone,and the purple area is Weihe fault depression zone,the yellow area is Xianshuihe fault zone,and the red area is the seismogenic structure and its adjacent fault zones. There is no anomaly in gray stations before the earthquake,and different station colors indicate different duration of anomalies before earthquakes, the same below

    图  3   2013年岷县漳县MS6.6地震(a)和2017年九寨沟MS7.0地震(b)震前地球物理观测异常分布和GNSS速度场

    蓝色区域为GNSS速度场中由过渡区至北西偏转的分支,橙色区域为GNSS速度场中速度向南东偏转的分支,绿色区域为GNSS速度场中速度向北西偏转的分支,紫色区域为GNSS速度场过渡区

    Figure  3.   Relationship between distribution of geophysical precursory anomalies and GNSS velocity field for the 2013 Minxian-Zhangxian MS6.6 earthquake (a) and the 2017 Jiuzhaigou MS7.0 earthquake (b)

    The blue area in the GNSS velocity field exhibits initial directionality ambiguity,subsequently deflecting NW,the orange area in the GNSS velocity field is characterized by a consistent velocity deflection towards the SE,the green area in the GNSS velocity field is characterized by a consistent velocity deflection towards the NW,and the purple area in the GNSS velocity field denotes an indeterminate transitional direction

    图  4   2013年岷县漳县MS6.6地震发震构造及安德森断层应力模式图

    震源机制数据来源于GCMT (2013),台站图例与图2图3相同。F1:东昆仑断裂;F2:迭部—白龙江断裂;F3:光盖山—迭山断裂;F4:临潭—宕昌断裂;F5:西秦岭断裂

    Figure  4.   Seismogenic structure and Anderson fault stress model of the 2013 Minxian-Zhangxian MS6.6 earthquake

    The focal mechanism data set is provided by GCMT (2013),the observation station legends are the same as Figs. 2 and 3. F1:east Kunlun fault;F2:Diebu-Bailongjiang fault;F3:Guanggaishan-Dieshan fault;F4:Lintan-Dangchang fault;F5:west Qinling fault

    图  5   2017年九寨沟MS7.0地震发震构造及安德森断层应力模式图

    震源机制数据来源于GCMT (2017),台站图例与图23相同。F1:岷江断裂;F2:树正断裂;F3:塔藏断裂

    Figure  5.   Seismogenic structure and Anderson fault stress model of the 2017 Jiuzhaigou MS7.0 earthquake

    The focal mechanism data set is provided by GCMT (2017),the observation station legends are the same as Figs. 2 and 3. F1:Minjiang fault;F2:Shuzheng fault;F3:Tazang fault

    图  6   2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震的摩尔—库仑圆对比

    蓝色阴影区和绿色阴影区分别代表2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震应力变化范围

    Figure  6.   Comparison of Mohr-Coulomb circles between the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake

    The blue shaded area and green shaded area represent the stress change range of the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake,respectively

    表  1   2013年岷县漳县MS6.6地震震前地球物理观测异常统计

    Table  1   The summary of geophysical precursory anomalies before the 2013 Minxian-Zhangxian MS6.6 earthquake

    台站 震前异常
    持续时间
    学科 异常描述 参考文献
    兰州台50—30 d许康生和曾文浩(2 017
    合作台50—31 d
    宕昌台50—32 d
    同仁台50—33 d
    乾陵台50—34 d形变钻孔应变中应变范数在背景变化的基础上
    在地震前各台都有所增大
    小庙台50—35 d
    昭通台50 d
    永胜台50—35 d
    昆明台50—35 d
    兰州台11 mo形变钻孔倾斜大幅异常曾文浩等(2 016
    宕昌台3 mo形变洞体应变2年破年变,临震3个月大幅变化史继平等(2 015
    临夏台30 mo形变钻孔应变主应力趋势转折史小平等(2 020
    四店3 d形变正断突跳,大幅跳变王双绪等(2 013),杨晓东等(2 014),李瑞莎等(2 016
    麻界滩7 mo跨断层正断突跳,大幅加速变化
    毛羽沟7 mo跨断层正断突跳,大幅加速变化
    巴沙沟10 mo跨断层大幅加速变化王双绪等(2 013),李瑞莎等(2 016
    刘家店7 mo
    六盘山36 mo跨断层较大幅度的异常变化
    和尚铺7 mo
    奈子沟22 mo李瑞莎等(2 016
    口子门10 mo
    江口26 mo
    柳家沟36 mo
    毛集36 mo
    固关15 mo
    冯家山15 mo跨断层趋势变化
    安国15 mo
    海原7 mo
    黄家坝22 mo
    扁都口26 mo
    白土庄18 mo
    水泉36 mo
    窝子滩18 mo跨断层趋势变化王双绪等(2 013),李瑞莎等(2 016
    九条岭10 mo
    武山19 mo水氡浓度临界慢化现象王熠熙等(2 018
    民和29 mo
    武山1号泉16 mo流体水氡转折上升张昱等(2 021),冯建刚等(2 022
    武山22泉16 mo水氡转折上升
    通渭台19 mo水氡上升加速下降
    武都26 mo水氡趋势下降
    天水花牛台3 mo水氡高值曹玲玲等(2 013),张昱等(2 021),
    冯建刚等(2 022
    清水李沟15 mo流体流量、水温上升流量高值张昱等(2 021),冯建刚等(2 022
    清水温泉12 mo水温低值,下降0.005 ℃
    平凉北山1号泉9 mo流体水氡 破年变低值张昱等(2 021),冯建刚等(2 022
    平凉北山2号泉6 mo水氡高值
    兰州台6 h电磁台站地磁Z分量李军辉等(2 021
    天水台4.8 h电磁台站地磁Z分量
    通渭台10 mo视电阻率视电阻率各向异性异常变化解滔等(2 022
    寺滩台50 d电磁台站地磁Z分量明显增强变化李军辉等(2 021
    临夏台7 mo电磁电阻率破年变张昱等(2 021),冯建刚等(2 022
    天水台3 mo电磁电阻率振荡波动
    平凉3 mo
    松山3 mo电场电场功率谱密度增大范莹莹等(2 015
    古丰3 mo
    天水44 d地电阻率地电阻率数据波动陈雪梅等(2 013
    下载: 导出CSV

    表  2   2017年九寨沟MS7.0地震震前地球物理观测异常统计

    Table  2   The summary of geophysical precursory anomalies before the 2017 Jiuzhaigou MS7.0 earthquake

    台站 震前异常
    持续时间
    学科 异常描述 参考文献
    宁陕台 8 mo 形变 垂直摆NS加速N倾 中国地震台网中心(2 019
    泾源 5—9 mo 伸缩仪、垂直摆加速变化
    两水 7 mo 形变 地应变加卸载响应比异常 岳冲等(2 020
    武都 2 mo
    天水 2—4 mo
    汉中台 12 mo
    盘古川 1 mo 水准 超2倍均方差,尖点突跳异常 张小涛等(2 018),张希等(2 018),
    中国地震台网中心(2 019
    毛羽沟 3 mo 超2倍均方差,趋势加速、震后转折回返
    毛集 17 mo 超2倍均方差,尖点突跳异常
    四店 21 mo 超2倍均方差,突跳异常
    硖口驿 24 mo 超2倍均方差,尖点突跳异常
    武都东 9 mo 超2倍均方差,突降0.8 mm,2017年3个月异常继续,7 个月回返0.49 mm
    黄家坝 17 mo 超2倍均方差,加速下降超限异常,大幅突跳异常
    巴沙沟 36 mo 超2倍均方差,趋势转折
    柳家沟 21 mo 超2倍均方差,持续逆断下降
    红柳峡 9 mo 超2倍均方差,大幅异常变化
    三关口 24 mo 水准 逆断下降,小幅回返 高曙德(2 020
    武都殿沟 19 mo 水氡 2015年1 个月快速上升变化 中国地震台网中心(2 019
    洋县 7 mo 水氡 快速下降 中国地震台网中心(2 019
    湟源 2 d 水氡 震前下降 罗宾生和陈永花(2 018
    松潘 6 mo 地磁 逐日比超阈值异常 芮雪莲等(2 019
    江油
    成都
    崇州
    成都 13 mo 地磁 谐波振幅比2016年出现趋势转折异常 何畅等(2 017
    天水 5 mo 地电 地电阻率 3—6 个月高频扰动异常 中国地震台网中心(2 019
    汉中台 24 mo 地磁 谐波振幅 中国地震台网中心(2 019
    合作 4 d 地磁 地震前地磁垂直强度极化短期异常 廖晓峰等(2 021
    天水 2 d
    舟曲 2 d
    巴塘 3 d
    大武 1 d
    西宁 6 d
    贵德 3 d
    泾阳 4 d
    平凉 7 mo 地电 趋势异常 高曙德等(2 017
    固原 13 mo 破年变
    下载: 导出CSV

    表  3   2013年岷县漳县Ms6.6地震与2017年九寨沟MS7.0地震不同构造单元震前地球物理观测异常对比

    Table  3   Comparison of geophysical precursory anomalies in different active fault zones before the 2013 Minxian-Zhangxian MS6.6 earthquake and the 2017 Jiuzhaigou MS7.0 earthquake

    地震名称 相关断层 测项总数 异常测向数量 异常比例 误差
    2 013年岷县漳县MS6.6地震 临潭—宕昌断裂 6 6 100% 7.1%
    东昆仑—西秦岭断裂带 80 30 38% 3.9%
    六盘山—海原断裂带 98 18 18% 1.9%
    渭河断陷带 39 1 3% 0.3%
    总数 223 55 25% 2.5%
    2 017年九寨沟MS7.0地震 岷山断裂 3 1 33% 12.5%
    龙门山断裂带 17 8 47% 5.6%
    东昆仑—西秦岭断裂带 79 21 27% 2.7%
    六盘山—海原断裂带 43 3 7% 0.7%
    渭河断陷带 18 1 6% 0.6%
    总数 160 34 21% 2.1%
    下载: 导出CSV

    表  4   2013年岷县漳县MS6.6地震和2017年九寨沟MS7.0地震震前不同学科地球物理观测异常数量对比

    Table  4   Comparison of the number of geophysical precursory anomalies in different disciplines before the 2013 Minxian-Zhangxian MS6.6 earthquake and 2017 Jiuzhaigou MS7.0 earthquake

    地震 电磁异常 流体异常 定点形变异常 跨断层水准异常
    个数 百分比 个数 百分比 个数 百分比 个数 异常百分比
    2 013年岷县漳县MS6.6地震 10 28% 11 15% 8 21% 26 35%
    2 017年九寨沟MS7.0地震 15 45% 3 5% 7 26% 9 26%
    下载: 导出CSV
  • 曹玲玲,王宗礼,李春燕. 2013. 岷县漳县6.6级地震前天水花牛水氡异常可靠性研究[J]. 地震工程学报,35(4):800–807. doi: 10.3969/j.issn.1000-0844.2013.04.800

    Cao L L,Wang Z L,Li C Y. 2013. Reliability study on water radon concentration anomaly of Huaniu spring in Tianshui before Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal,35(4):800–807 (in Chinese).

    陈雪梅,武银,张璇,田洁,杨兴悦,缑亚江. 2013. 岷县6.6级及芦山7.0级地震前天水地电阻率井下观测资料异常[J]. 地震工程学报,35(4):816–818. doi: 10.3969/j.issn.1000-0844.2013.04.816

    Chen X M,Wu Y,Zhang X,Tian J,Yang X Y,Gou Y J. 2013. The anomalies of earth resistivity recorded by the deep well observing system of Tianshui station before Minxian MS6.6 earthquake and Lushan MS7.0 earthquake[J]. China Earthquake Engineering Journal,35(4):816–818 (in Chinese).

    程式,任昭明. 1989. 四川地区不同类型地震前兆异常的基本特征[J]. 四川地震,(2):1–7.

    Cheng S,Ren Z M. 1989. Basic characteristics of different types of earthquake precursor anomalies in Sichuan[J]. Earthquake Research in Sichuan,(2):1–7 (in Chinese).

    池顺良,刘琦,迟毅,邓涛,廖成旺,阳光,张贵萍,陈洁. 2013. 2013年芦山MS7.0地震的震前及临震应变异常[J]. 地震学报,35(3):296–303. doi: 10.3969/j.issn.0253-3782.2013.03.002

    Chi S L,Liu Q,Chi Y,Deng T,Liao C W,Yang G,Zhang G P,Chen J. 2013. Borehole strain anomalies before the 20 April 2013 Lushan MS7.0 earthquake[J]. Acta Seismologica Sinica,35(3):296–303. (in Chinese).

    邓起东,陈社发,赵小麟. 1994. 龙门山及其邻区的构造和地震活动及动力学[J]. 地震地质,16(4):389–403.

    Deng Q D,Chen S F,Zhao X L. 1994. Tectonics,seismicity and dynamics of Longmenshan mountains and its adjacent regions[J]. Seismology and Geology,16(4):389–403 (in Chinese).

    《2006—2020年中国大陆地震危险区与地震灾害损失预测研究》 项目组. 2007. 2006—2020年中国大陆地震危险区与地震灾害损失预测研究[M]. 北京:地震出版社:1−286.

    Working group of Studies for the Seismic Prone Regions and Prediction of Seismic Losses in These Regions During 2006−2020. 2007. Studies for the Seismic Prone Regions and Prediction of Seismic Losses in These Regions During 2006−2020[M]. Beijing:Seismological Press:1−286 (in Chinese).

    范莹莹,杜学彬,谭大诚,安张辉,刘君,王建军. 2015. 芦山MS7.0与岷县漳县MS6.6地震前甘肃地区部分台站地电场变化[J]. 地震,35(1):100–111. doi: 10.3969/j.issn.1000-3274.2015.01.011

    Fan Y Y,Du X B,Tan D C,An Z H,Liu J,Wang J J. 2015. Geo-electrical field variations in Gansu area before the 2013 Lushan MS7.0 and Minxian-Zhangxian MS6.6 earthquakes[J]. Earthquake,35(1):100–111 (in Chinese).

    冯建刚,李文巧,马海萍. 2022. 岷县—漳县6.6级地震孕震机制研究[M]. 兰州:兰州大学出版社:1−117.

    Feng J G,Li W Q,Ma H P. 2022. Study on the Seismogenic Mechanism of Minxian-Zhangxian MS6.6 Earthquake[M]. Lanzhou:Lanzhou University Press:1−117 (in Chinese).

    冯志生,杨建军,梅卫萍,耿杰,汪雪泉,刘义高. 2004. 华东地区地电阻率各向异性度的地震前兆异常特征初步研究[J]. 地震学报,26(2):223–227. doi: 10.3321/j.issn:0253-3782.2004.02.012

    Feng Z S,Yang J J,Mei W P,Geng J,Wang X Q,Liu Y G. 2004. Preliminary study on characteristics of seismic precursor of earth resistivity anisotropy degree in east China[J]. Acta Seismologica Sinica,26(2):223–227 (in Chinese).

    付国超,吕同艳,孙东霞,熊仁伟. 2017. 2017年8月8日四川九寨沟7.0级地震发震构造浅析[J]. 地质力学学报,23(6):799–809.

    Fu G C,Lü T Y,Sun D X,Xiong R W. 2017. Seismogenic structure of the MS7.0 earthquake on August 8,2017 in Jiuzhaigou,Sichuan[J]. Journal of Geomechanics,23(6):799–809 (in Chinese).

    高曙德,汤吉,杜学彬,刘小凤,苏永刚,陈彦平,狄国荣,梅东林,詹艳,王立凤. 2010. 汶川8.0级地震前后电磁场的变化特征[J]. 地球物理学报,53(3):512–525.

    Gao S D,Tang J,Du X B,Liu X F,Su Y G,Chen Y P,Di G R,Mei D L,Zhan Y,Wang L F. 2010. The change characteristics of electromagnetic field before to after Whenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,53(3):512–525 (in Chinese).

    高曙德,郭安宁,王军燕,武善艺,杨晓鹏,张博,赵斐,李旭升. 2017. 四川九寨沟MS7.0地震前地电阻率的异常变化[J]. 地震工程学报,39(4):645–651. doi: 10.3969/j.issn.1000-0844.2017.04.0645

    Gao S D,Guo A N,Wang J Y,Wu S Y,Yang X P,Zhang B,Zhao F,Li X S. 2017. Earth-resistivity anomalies before the Jiuzhaigou MS7.0 earthquake in Sichuan Province[J]. China Earthquake Engineering Journal,39(4):645–651 (in Chinese).

    高曙德. 2020. 四川九寨沟7.0级地震前震情跟踪概述及震后总结[J]. 地球物理学进展,35(4):1250–1260. doi: 10.6038/pg2020DD0249

    Gao S D. 2020. Overview of tracking of Sichuan Jiuzhaigou MS7.0 earthquake in 2017 and its post earthquake precursor anomaly summary[J]. Progress in Geophysics,35(4):1250–1260 (in Chinese).

    国家地震局预测预防司. 1998. 地震综合分析预报方法[M]. 北京:地震出版社:1−123.

    Department of Earthquake Prediction and Prevention,State Seismological Bureau. 1998. Earthquake Comprehensive Analysis and Prediction Method[M]. Beijing:Seismological Press:1−123 (in Chinese).

    何畅,廖晓峰,祁玉萍,邱桂兰,任越霞. 2017. 2017年8月8日九寨沟MS7.0地震前成都台地磁谐波振幅比异常分析[J]. 中国地震,33(4):575–581. doi: 10.3969/j.issn.1001-4683.2017.04.013

    He C,Liao X F,Qi Y P,Qiu G L,Ren Y X. 2017. Study on anomalous variation of the geomagnetic harmonic wave amplitude ratios of the Chengdu seismic station before the MS7.0 Jiuzhaigou earthquake on August 8,2017[J]. Earthquake Research in China,33(4):575–581 (in Chinese).

    何文贵,郑文俊,王爱国,刘兴旺,张波,刘方斌,庞炜. 2013. 临潭—宕昌断裂新活动特征与岷县漳县MS6.6地震关系研究[J]. 地震工程学报,35(4):751–760. doi: 10.3969/j.issn.1000-0844.2013.04.751

    He W G,Zheng W J,Wang A G,Liu X W,Zhang B,Liu F B,Pang W. 2013. New activities of Lintan-Dangchang fault and its relations to Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal,35(4):751–760 (in Chinese).

    季灵运,刘传金,徐晶,刘雷,龙锋,张致伟. 2017. 九寨沟MS7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报,60(10):4069–4082. doi: 10.6038/cjg20171032

    Ji L Y,Liu C J,Xu J,Liu L,Long F,Zhang Z W. 2017. InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou MS7.0 earthquake in China[J]. Chinese Journal of Geophysics,60(10):4069–4082 (in Chinese).

    孔庆敏,王广才,史浙明. 2018. 云南地区震前地下流体异常特征统计分析[J]. 地震学报,40(5):632–645.

    Kong Q M,Wang G C,Shi Z M. 2018. Statistical analysis of pre-seismic anomalous characteristics of subsurface fluids in Yunnan region[J]. Acta Seismologica Sinica,40(5):632–645 (in Chinese).

    李传友. 2005. 青藏高原东北部几条主要断裂带的定量研究[D]. 北京:中国地震局地质研究所:193−203.

    Li C Y. 2005. Quantitative Studies on Major Active Fault Zones in Northestern Qinghai-Tibet Plateau[D]. Beijing:Institute of Geology,China Earthquake Administration:193−203 (in Chinese).

    李军辉,姜楚峰,冯志生,何康,郑海刚. 2021. 2013年岷县—漳县6.6级地震前地磁日变化异常及机理分析[J]. 地震工程学报,43(3):551–558. doi: 10.3969/j.issn.1000-0844.2021.03.551

    Li J H,Jiang C F,Feng Z S,He K,Zheng H G. 2021. Characteristics and mechanism of geomagnetic diurnal variation before the 2013 Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal,43(3):551–558 (in Chinese).

    李瑞莎,张希,唐红涛,贾鹏,路珍. 2016. 青藏块体东北缘跨断层形变典型震例总结与预测判据指标分析[J]. 地震,36(4):35–46. doi: 10.3969/j.issn.1000-3274.2016.04.003

    Li R S,Zhang X,Tang H T,Jia P,Lu Z. 2016. A summary of cross-fault deformations of typical earthquake cases and predictors in the northeastern margin of Qinghai-Tibet block[J]. Earthquake,36(4):35–46 (in Chinese).

    李媛,陈长云,李腊月,周伟. 2023. 2022年门源M6.9地震前孕震区跨断层形变异常特征及其机理[J]. 地震,43(1):1–14.

    Li Y,Chen C Y,Li L Y,Zhou W. 2023. The abnormal characteristics and mechanism of cross-fault deformation in the seismogenic zone before the 2022 Menyuan M6.9 earthquake[J]. Earthquake,43(1):1–14 (in Chinese).

    李志强,姜立新,李亦纲,余世舟,卢宁,李锰,袁志祥,苏永齐. 2013. 2013年7月22日甘肃岷县漳县MS6.6地震灾害特点分析[J]. 地震地质,35(3):593–603. doi: 10.3969/j.issn.0253-4967.2013.03.013

    Li Z Q,Jiang L X,Li Y G,Yu S Z,Lu N,Li M,Yuan Z X,Su Y Q. 2013. Analysis on the characteristics of the MS6.6 Minxian-Zhangxian earthquake hazard in Gansu Province,China on July 22,2013[J]. Seismology and Geology,35(3):593–603 (in Chinese).

    廖晓峰,樊文杰,邱桂兰,李雪浩,杨鹏. 2021. 2017年8月8日九寨沟7.0级地震前地磁垂直强度极化短期异常特征分析[J]. 地震,41(4):68–77.

    Liao X F,Fan W J,Qiu G L,Li X H,Yang P. 2021. Analysis on short-term characteristics of geomagnetic vertical intensity polarization anomaly before Jiuzhaigou 7.0 earthquake on August 8,2017[J]. Earthquake,41(4):68–77 (in Chinese).

    刘桂萍. 2006. 关于我国地震预报的几点思考[J]. 国际地震动态,(3):32–38. doi: 10.3969/j.issn.0253-4975.2006.03.007

    Liu G P. 2006. A few consideration points about the earthquake prediction in P.R. China[J]. Recent Developments in World Seismology,(3):32–38 (in Chinese).

    刘桂萍. 2010. 关于我国地震预测预报发展的几点思考[J]. 地震,30(1):1–9. doi: 10.3969/j.issn.1000-3274.2010.01.001

    Liu G P. 2010. Some reflections on the advancement of earthquake prediction in China[J]. Earthquake,30(1):1–9 (in Chinese).

    罗宾生,陈永花. 2018. 2017年九寨沟7.0级地震前后湟源水氡异常特征分析[J]. 高原地震,30(3):7–10. doi: 10.3969/j.issn.1005-586X.2018.03.002

    Luo B S,Chen Y H. 2018. Analysis on the abnormal changes of radon in Huangyuan seismic station before and after Jiuzhaigou earthquake with M7.0[J]. Plateau Earthquake Research,30(3):7–10 (in Chinese).

    M7专项工作组. 2012. 中国大陆大地震中-长期危险性研究[M]. 北京:地震出版社:1−336.

    Working Group of M7. 2012. Study on the Mid- to Long-Term Potential of Large Earthquakes on Chinese Continent[M]. Beijing:Seismological Press:1−336 (in Chinese).

    马海萍,赵静,王朋涛,王谦,李敏娟,武善艺. 2022. 2021年甘肃阿克塞5.5级地震前区域地壳变形异常特征分析[J]. 地震工程学报,44(3):605–610.

    Ma H P,Zhao J,Wang P T,Wang Q,Li M J,Wu S Y. 2022. Anomaly characteristics of regional crustal deformation before the Aksai M5.5 earthquake[J]. China Earthquake Engineering Journal,44(3):605–610 (in Chinese).

    马瑾,郭彦双. 2014. 失稳前断层加速协同化的实验室证据和地震实例[J]. 地震地质,36(3):547–561. doi: 10.3969/j.issn.0253-4967.2014.03.001

    Ma J,Guo Y S. 2014. Accelerated synergism prior to fault instability:Evidence from laboratory experiments and an earthquake case[J]. Seismology and Geology,36(3):547–561 (in Chinese).

    马钦忠,冯志生,宋治平,赵卫国. 2004. 崇明与南京台震前地电场变化异常分析[J]. 地震学报,26(3):304–312. doi: 10.3321/j.issn:0253-3782.2004.03.009

    Ma Q Z,Feng Z S,Song Z P,Zhao W G. 2004. Study on the variation characteristics of the geoelectric field preceding earthquakes[J]. Acta Seismologica Sinica,26(3):304–312 (in Chinese).

    马钦忠,赵卫国,张文平. 2009. 文县地电场震前异常变化及其在2001年昆仑山口西MS8.1地震预测研究中的应用[J]. 地震学报,31(6):660–670. doi: 10.3321/j.issn:0253-3782.2009.06.007

    Ma Q Z,Zhao W G,Zhang W P. 2009. Abnormal variations of geoelectric field recorded at Wenxian station preceding earthquakes and their application to the prediction of the 2001 MS8.1 Kunlun earthquake[J]. Acta Seismologica Sinica,31(6):660–670 (in Chinese).

    马玉川,晏锐,王广才,余怀忠,黎明晓,丁志华,张子广. 2022. 1976年唐山7.8级地震前地下水位变化与地震成核过程的关系[J]. 地球物理学报,65(4):1325–1335. doi: 10.6038/cjg2022P0165

    Ma Y C,Yan R,Wang G C,Yu H Z,Li M X,Ding Z H,Zhang Z G. 2022. Groundwater level changes before the 1976 Tangshan MS7.8 earthquake and its relation with the earthquake nucleation process[J]. Chinese Journal of Geophysics,65(4):1325–1335 (in Chinese).

    马宗晋,傅征祥,张郢珍,汪成民,张国民,刘德富. 1982. 1966—1976年中国九大地震[M]. 北京:地震出版社:1−216.

    Ma Z J,Fu Z X,Zhang Y Z,Wang C M,Zhang G M,Liu D F. 1982. The Nine Strong Earthquakes in China During 1966—1976[M]. Beijing:Seismological Press:1−216 (in Chinese).

    梅世蓉. 1996. 地震前兆场物理模式与前兆时空分布机制研究(二):强震孕育时应力、应变场的演化与地震活动、地震前兆的关系[J]. 地震学报,18(1):1–10.

    Mei S R. 1996. Study on physical model of earthquake precursor field and mechanism of time-space distribution of precursors (2):Relationship between evolution of stress and strain field during strong earthquake preparation and seismicity[J]. Acta Seismologica Sinica,18(1):1–10 (in Chinese).

    任俊杰,徐锡伟,张世民,罗毅,梁欧博,赵俊香. 2017. 东昆仑断裂带东端的构造转换与2017年九寨沟MS7.0地震孕震机制[J]. 地球物理学报,60(10):4027–4045. doi: 10.6038/cjg20171029

    Ren J J,Xu X W,Zhang S M,Luo Y,Liang O B,Zhao J X. 2017. Tectonic transformation at the eastern termination of the Eastern Kunlun fault zone and seismogenic mechanism of the 8 August 2017 Jiuzhaigou MS7.0 earthquake[J]. Chinese Jour nal of Geophysics,60(10):4027–4045 (in Chinese).

    芮雪莲,廖晓峰,杨鹏,黄岚俊. 2019. 九寨沟7.0级地震前四川地区地磁异常分析[J]. 四川地震,(3):28–31.

    Rui X L,Liao X F,Yang P,Huang L J. 2019. Analysis of geomagnetic anomalies of Sichuan associated with the Jiuzhaigou M7.0 earthquake[J]. Earthquake Research in Sichuan,(3):28–31 (in Chinese).

    史继平,王小娟,翟玮. 2015. 岷县-漳县6.6级地震洞体应变异常特征[J]. 地震地磁观测与研究,36(5):59–63.

    Shi J P,Wang X J,Zhai W. 2015. The abnormal change of cave volume strain for Minxian-Zhangxian MS6.6 earthquake[J]. Seismological and Geomagnetic Observation and Research,36(5):59–63 (in Chinese).

    史小平,张磊,姜振海. 2020. 临夏台分量钻孔应变观测与岷县-漳县6.6级地震的相关性分析[J]. 地震工程学报,42(2):391–395. doi: 10.3969/j.issn.1000-0844.2020.02.391

    Shi X P,Zhang L,Jiang Z H. 2020. Correlation between component borehole strain observation at Linxia seismic station and the Minxian-Zhangxian M6.6 earthquake[J]. China Earthquake Engineering Journal,42(2):391–395 (in Chinese).

    宋成科,陈政宇,周思远,徐玉健,陈斌. 2021. 2021年漾濞MS6.4地震前后的地磁场变化[J]. 地震地质,43(4):958–971. doi: 10.3969/j.issn.0253-4967.2021.04.014

    Song C K,Chen Z Y,Zhou S Y,Xu Y J,Chen B. 2021. Geomagnetic field change before and after 2021 Yangbi MS6.4 earthquake[J]. Seismology and Geology,43(4):958–971 (in Chinese).

    王双绪,蒋锋云,李宁,刘立炜,张四新. 2013. 岷县漳县6.6级地震前区域地壳运动变形背景与断层形变异常特征[J]. 地震工程学报,35(3):503–512. doi: 10.3969/j.issn.1000-0844.2013.03.0503

    Wang S X,Jiang F Y,Li N,Liu L W,Zhang S X. 2013. Regional crustal movement background and cross-fault deformation anomaly characteristics prior to the Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal,35(3):503–512 (in Chinese).

    王同利,崔博闻,叶青,李菊珍,王丽红,童琼. 2020. 九寨沟MS7.0地震地电阻率变化时空演化分析[J]. 地球物理学报,63(6):2345–2356. doi: 10.6038/cjg2020N0454

    Wang T L,Cui B W,Ye Q,Li J Z,Wang L H,Tong Q. 2020. Temporal-spatial distribution of apparent resistivity before and after the Jiuzhaigou MS7.0 earthquake[J]. Chinese Journal of Geophysics,63(6):2345–2356 (in Chinese).

    王熠熙,李赫,王博,杨朋涛,王俊,向阳,王喜龙,李悦. 2018. 2013年岷县-漳县MS6.6地震前水氡浓度的临界慢化现象研究[J]. 地震,38(1):128–138. doi: 10.3969/j.issn.1000-3274.2018.01.012

    Wang Y X,Li H,Wang B,Yang P T,Wang J,Xiang Y,Wang X L,Li Y. 2018. Critical slow down phenomena of radon concentrations before the 2013 Minxian-Zhangxian MS6.6 earthquake[J]. Earthquake,38(1):128–138 (in Chinese).

    闻学泽. 2018. 巴颜喀拉块体东边界千年破裂历史与2008年汶川、2013年芦山和 2017年九寨沟地震[J]. 地震学报,40(3):255–267. doi: 10.11939/jass.20170211

    Wen X Z. 2018. The 2008 Wenchuan,2013 Lushan and 2017 Jiuzhaigou earthquakes,Sichuan,in the last more than one thousand years of rupture history of the eastern margin of the Bayan Har block[J]. Acta Seismologica Sinica,40(3):255–267 (in Chinese).

    吴忠良,王林瑛. 2004. 可能的地震前兆的一个统计性质及其与地震类型的关系[J]. 地震学报,26(增刊):58–63.

    Wu Z L,Wang L Y. 2004. Statistical property of candidate earthquake precursors and its apparent focal mechanism dependence[J]. Acta Seismologica Sinica,26(S1):58–63 (in Chinese).

    肖兰喜,朱元清,李平,杨挺. 2000. 邢台地震前地壳形变异常的可能性物理机制[J]. 地球物理学报,43(5):648–656.

    Xiao L X,Zhu Y Q,Li P,Yang T. 2000. A possible mechanism of crustal deformation before large earthquake of Xingtai in 1966[J]. Chinese Journal of Geophysics,43(5):648–656 (in Chinese).

    解滔,于晨,王亚丽,李美,王中平,姚丽,卢军. 2022. 2013年岷县-漳县 MS6.6 地震前通渭台的视电阻率变化[J]. 地震地质,44(3):701–717. doi: 10.3969/j.issn.0253-4967.2022.03.009

    Xie T,Yu C,Wang Y L,Li M,Wang Z P,Yao L,Lu J. 2022. Apparent resitivity variation of Tongwei seismic station before the Minxian-Zhangxian MS6.6 earthquake in 2013[J]. Seismology and Geology,44(3):701–717 (in Chinese).

    解滔,任越霞,廖晓峰,何畅,于晨,韩盈,卢军. 2023. 2022年四川泸定MS6.8地震前地下介质视电阻率变化特征及其机理分析[J]. 地球物理学报,66(4):1428–1437. doi: 10.6038/cjg2022Q0736

    Xie T,Ren Y X,Liao X F,He C,Yu C,Han Y,Lu J. 2023. Changes in apparent resistivity and its possible mechanisms before the Luding MS6.8 earthquake on September 5,2022,Sichuan Province,China[J]. Chinese Journal of Geophysics,66(4):1428–1437 (in Chinese).

    谢祖军,郑勇,姚华建,房立华,张勇,刘成利,王毛毛,单斌,张会平,任俊杰,季灵运,宋美琴. 2018. 2017年九寨沟MS7.0地震震源性质及发震构造初步分析[J]. 中国科学:地球科学,48(1):79–92.

    Xie Z J,Zheng Y,Yao H J,Fang L H,Zhang Y,Liu C L,Wang M M,Shan B,Zhang H P,Ren J J,Ji L Y,Song M Q. 2018. Preliminary analysis on the source properties and seismogenic structure of the 2017 MS7.0 Jiuzhaigou earthquake[J]. Science China Earth Sciences,61(3):339–352.

    徐锡伟,闻学泽,陈桂华,于贵华. 2008. 巴颜喀拉地块东部龙日坝断裂带的发现及其大地构造意义[J]. 中国科学(D辑),38(5):529–542.

    Xu X W,Wen X Z,Chen G H,Yu G H. 2008. The discovery of the Longriba fault zone in the eastern part of the Bayan Har block and its tectonic implications[J]. Science in China:Series D,51(9):1209–1223.

    许康生,曾文浩. 2017. 岷县-漳县M6.6地震前后的形变范数变化特征[J]. 大地测量与地球动力学,37(9):884–887.

    Xu K S,Zeng W H. 2017. The characteristics of deformation norm changes before and after the Minxian-Zhangxian M6.6 earthquake[J]. Journal of Geodesy and Geodynamics,37(9):884–887 (in Chinese).

    晏锐,蒋长胜,张浪平. 2011. 汶川8.0级地震前水氡浓度的临界慢化现象研究[J]. 地球物理学报,54(7):1817–1826. doi: 10.3969/j.issn.0001-5733.2011.07.015

    Yan R,Jiang C S,Zhang L P. 2011. Study on critical slowing down phenomenon of radon concentrations in water before the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,54(7):1817–1826 (in Chinese).

    晏锐,田雷,王广才,钟骏,刘杰,周志华. 2018. 2008年汶川8.0级地震前地下流体异常回顾与统计特征分析[J]. 地球物理学报,61(5):1907–1921. doi: 10.6038/cjg2018M0162

    Yan R,Tian L,Wang G C,Zhong J,Liu J,Zhou Z H. 2018. Review and statistically characteristic analysis of underground fluid anomalies prior to the 2008 Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,61(5):1907–1921 (in Chinese).

    杨晓东,李宁,刘立炜,张四新. 2014. 2013年甘肃岷县漳县MS6.6地震跨断层形变异常研究[J]. 地震研究,37(4):578–587. doi: 10.3969/j.issn.1000-0666.2014.04.014

    Yang X D,Li N,Liu L W,Zhang S X. 2014. Research on cross-fault deformation abnormity of Minxian-Zhangxian MS6.6 earthquake in Gansu in 2013[J]. Journal of Seismological Research,37(4):578–587 (in Chinese).

    袁道阳,张培震,刘百篪,甘卫军,毛凤英,王志才,郑文俊,郭华. 2004. 青藏高原东北缘晚第四纪活动构造的几何图像与构造转换[J]. 地质学报,78(2):270–278. doi: 10.3321/j.issn:0001-5717.2004.02.017

    Yuan D Y,Zhang P Z,Liu B C,Gan W J,Mao F Y,Wang Z C,Zheng W J,Guo H. 2004. Geometrical imagery and tectonic transformation of Late Quaternary active tectonics in northeastern margin of Qinghai-Xizang Plateau[J]. Acta Geologica Sinica,78(2):270–278 (in Chinese).

    岳冲,牛安福,余怀忠,吉平,姜祥华,马未宇,王亚丽. 2020. 九寨沟MS7.0地震前地应变LURR异常演化特征[J]. 中国地震,36(2):267–275.

    Yue C,Niu A F,Yu H Z,Ji P,Jiang X H,Ma W Y,Wang Y L. 2020. Evolutionary characteristics of ground strain LURR anomaly before Jiuzhaigou MS7.0 earthquake[J]. Earthquake Research in China,36(2):267–275 (in Chinese).

    曾文浩,姜振海,翟玮,王小娟. 2016. 临潭—宕昌断裂3次中强地震活动与兰州钻孔倾斜观测趋势性变化特征分析[J]. 中国地震,32(3):539–546. doi: 10.3969/j.issn.1001-4683.2016.03.011

    Zeng W H,Jiang Z H,Zhai W,Wang X J. 2016. 3 strong earthquake activities in the Lintan-Tanchang fracture and analysis of trend variation characteristics of borehole tilt observation in Lanzhou[J]. Earthquake Research in China,32(3):539–546 (in Chinese).

    张国民,罗兰格. 1998. 地震综合分析预报方法[M]. 北京:地震出版社:1−123.

    Zhang G M,Luo L G. 1998. Earthquake Comprehensive Analysis and Prediction Method [M]. Beijing:Seismological Press:1−123 (in Chinese).

    张国民. 2002. 我国地震监测预报研究的主要科学进展[J]. 地震,22(1):2–8. doi: 10.3969/j.issn.1000-3274.2002.01.002

    Zhang G M. 2002. The main science advance of earthquake monitoring and prediction in China[J]. Earthquake,22(1):2–8 (in Chinese).

    张希,贾鹏,李瑞莎,惠旭辉. 2018. 九寨沟MS7.0地震前跨断层水准前兆异常与震后变化[J]. 大地测量与地球动力学,38(11):1101–1106.

    Zhang X,Jia P,Li R S,Hui X H. 2018. Precursory anomalies of across-fault leveling before the Jiuzhaigou MS7.0 earthquake and variation after the quake[J]. Journal of Geodesy and Geodynamics,38(11):1101–1106 (in Chinese).

    张小涛,宋治平,李纲. 2018. 九寨沟MS7.0地震的前兆异常时空演化特征及其分析[J]. 中国地震,34(4):772–780. doi: 10.3969/j.issn.1001-4683.2018.04.017

    Zhang X T,Song Z P,Li G. 2018. Temporal and spatial evolution of precursory anomalies of the Jiuzhaigou MS7.0 earthquake and its analysis[J]. Earthquake Research in China,34(4):772–780 (in Chinese).

    张永仙,余素荣,张晓东,薛艳. 2004. 中国大陆西部前兆异常涨落与强震短期预测研究[J]. 地震,24(1):7–18. doi: 10.3969/j.issn.1000-3274.2004.01.002

    Zhang Y X,Yu S R,Zhang X D,Xue Y. 2004. Study on the relationship between fluctuation of anomalies in the western China and short-term prediction of strong earthquakes[J]. Earthquake,24(1):7–18 (in Chinese).

    张昱,冯建刚,范兵,曹玲玲,郑卫平,陈瑶,李春燕,姜佳佳. 2021. 岷县-漳县MS6.6地震前后甘肃前兆异常及响应特征[J]. 地震工程学报,43(1):19–27.

    Zhang Y,Feng J G,Fan B,Cao L L,Zheng W P,Chen Y,Li C Y,Jiang J J. 2021. Precursor anomalies and response characteristics in Gansu Province before and after the Minxian-Zhangxian MS6.6 earthquake[J]. China Earthquake Engineering Journal,43(1):19–27 (in Chinese).

    郑文俊,闵伟,何文贵,任治坤,刘兴旺,王爱国,许冲,李峰. 2013a. 2013年甘肃岷县漳县6.6级地震震害分布特征及发震构造分析[J]. 地震地质,35(3):604–615.

    Zheng W J,Min W,He W G,Ren Z K,Liu X W,Wang A G,Xu C,Li F. 2013a. Distribution of the related disaster and the causative tectonic of the Minxian-Zhangxian MS6.6 earthquake on July 22,2013,Gansu,China[J]. Seismology and Geology,35(3):604–615 (in Chinese).

    郑文俊,袁道阳,何文贵,闵伟,任治坤,刘兴旺,王爱国,许冲,葛伟鹏,李峰. 2013b. 甘肃东南地区构造活动与2013年岷县-漳县MS6.6级地震孕震机制[J]. 地球物理学报,56(12):4058–4071 (in Chinese).

    Zheng W J,Yuan D Y,He W G,Min W,Ren Z K,Liu X W,Wang A G,Xu C,Ge W P,Li F. 2013b. Geometric pattern and active tectonics in southeastern Gansu Province:Discussion on seismogenic mechanism of the Minxian-Zhangxian MS6.6 earthquake on July 22,2013[J]. Chinese Journal of Geophysics,56(12):4058–4071 (in Chinese).

    中国地震局监测预报司. 2020. 形变分析预报技术方法工作手册[M]. 北京:地震出版社:1−170.

    Monitoring and Forecasting Department of China Earthquake Administration. 2020. Deformation Analysis and Prediction Technology Method Manual[M]. Beijing:Seismological Press:1−170 (in Chinese).

    中国地震台网中心. 2019. 2017年九寨沟7.0级地震总结[M]. 北京:地震出版社:1−230.

    China Earthquake Networks Center. 2019. Summary of Jiuzhaigou MS7.0 Earthquake in 2017[M]. Beijing:Seismological Press:1−230 (in Chinese).

    朱守彪. 2020. 2011年日本东北大地震(MW=9.0)震间与震前变形场特征及其对强震预测的启示[J]. 地球物理学报,63(2):427–439. doi: 10.6038/cjg2020N0142

    Zhu S B. 2020. Inter- and pre-seismic deformations in the 2011 MW9.0 Tohoku-Oki earthquake:Implications for earthquake prediction[J]. Chinese Journal of Geophysics,63(2):427–439 (in Chinese).

    Anderson E M. 1951. The Dynamics of Faulting and Dyke Formation With Application to Britain[M],2nd ed. Edinburgh:Oliver & Boyd:1−206.

    Chen S Z,Zhao J M,Xu Q,Liu H B,Ju C H. 2021. Evidence for fluids at the hypocenter of the 2017 MS7.0 Jiuzhaigou earthquake revealed by local earthquake tomography[J]. J Geophys Res:Solid Earth, 126 (4):e2020JB021036.

    Cicerone R D,Ebel J E,Britton J. 2009. A systematic compilation of earthquake precursors[J]. Tectonophysics,476(3/4):371–396. doi: 10.1016/j.tecto.2009.06.008

    Dewey J F,Burke K C A. 1973. Tibetan,Variscan,and Precambrian basement reactivation:Products of continental collision[J]. Journal of Geology,81(6):683–692. doi: 10.1086/627920

    GCMT. 2013. Global CMT catalogue[EB/OL]. [2023−07−05]. https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2013&mo=7&day=22&otype=ymd&oyr=2013&omo=7&oday=22&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000&lts=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0.

    GCMT. 2017. Global CMT catalogue[EB/OL]. [2023−07−05]. https://www.globalcmt.org/cgi-bin/globalcmt-cgi-bin/CMT5/form?itype=ymd&yr=2017&mo=8&day=8&otype=ymd&oyr=2017&omo=8&oday=8&jyr=1976&jday=1&ojyr=1976&ojday=1&nday=1&lmw=0&umw=10&lms=0&ums=10&lmb=0&umb=10&llat=-90&ulat=90&llon=-180&ulon=180&lhd=0&uhd=1000&lts=-9999&uts=9999&lpe1=0&upe1=90&lpe2=0&upe2=90&list=0.

    Jia K,Zhou S Y,Zhuang J C,Jiang C S,Guo Y C,Gao Z H,Gao S S. 2018. Did the 2008 MW7.9 Wenchuan earthquake trigger the occurrence of the 2017 MW6.5 Jiuzhaigou earthquake in Sichuan,China? [J]. J Geophys Res:Solid Earth, 123 (4):2965−2983.

    Li S,Ma Z K ,Shi H Y,Gao X. 2021. New understanding of Anderson fault formation model based on butterfly plastic zone theory[J]. Arabian Journal of Geosciences, 14 (8):696.

    Molnar P,Stock J M. 2009. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics[J]. Tectonics,28(3):TC3001.

    Tapponnier P,Peltzer G,Le Dain A Y,Armijo R,Cobbold P. 1982. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine[J]. Geology,10(12):611–616. doi: 10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

    Tapponnier P,Xu Z Q,Roger F,Meyer F,Arnaud N,Wittlinger G,Yang J S. 2001. Oblique stepwise rise and growth of the Tibet Plateau[J]. Science,294(5547):1671–1677.

    Wang M,Shen Z K. 2020. Present-day crustal deformation of continental China derived from GPS and its tectonic implications[J]. J Geophys Res:Solid Earth,125(2):e2019JB018774.

  • 期刊类型引用(10)

    1. 李思妍,李桂荣,王晓飞,阿卜杜塔伊尔·亚森. 利用GPS资料分析新疆两次6级地震震前位移微动态特征. 内陆地震. 2024(03): 231-241 . 百度学术
    2. 丁宇,李桂荣,朱治国,李瑞,苏力坦·玉散,李杰,刘代芹,杨磊,赵磊,孙小旭,塔依尔·喀哈尔. 新疆4次M_S≥6.0地震基线时间序列异常变化特征研究. 内陆地震. 2022(01): 33-41 . 百度学术
    3. 黄帅堂,常想德,马建,胡伟华,任静,刘建明,张文秀,赖爱京. 天山北麓库松木契克山山前断裂东段断层陡坎研究. 地震地质. 2022(01): 20-34 . 百度学术
    4. 郑雪刚,马学军,赵鹏毕. 新疆精河M_S6.6地震震源深度研究. 内陆地震. 2022(04): 312-319 . 百度学术
    5. 张占阳,孙启凯,何亚东,张俊青,刘坤. 定量与定性分析在2017年精河M_S6.6地震中的应用. 华北地震科学. 2021(01): 64-69 . 百度学术
    6. 王平川,张勇,冯万鹏. 2017年精河M_S6.6地震的断层参数和破裂过程. 地震学报. 2021(02): 137-151+135 . 本站查看
    7. 李惠玲,曹建玲,魏文薪. 新疆精河2017年6.6级地震对2018年5.4级地震的应力影响分析. 大地测量与地球动力学. 2021(12): 1253-1257+1320 . 百度学术
    8. 王月,胡少乾,何骁慧,郭凯,解孟雨,邓世广,马亚伟. 2021年5月21日云南漾濞6.4级地震序列重定位及震源机制研究. 地球物理学报. 2021(12): 4510-4525 . 百度学术
    9. 郭志,高星,路珍. 2019年6月17日四川长宁地震重定位及震源机制研究. 地震学报. 2020(03): 245-255+377 . 本站查看
    10. 唐明帅,王海涛,魏芸芸,李艳永,王琼,魏斌,苏金波. 利用接收函数探讨新疆几次中强地震的地壳孕育深度. 中国地震. 2020(03): 517-526 . 百度学术

    其他类型引用(2)

图(6)  /  表(4)
计量
  • 文章访问数:  192
  • HTML全文浏览量:  34
  • PDF下载量:  54
  • 被引次数: 12
出版历程
  • 收稿日期:  2023-09-25
  • 修回日期:  2024-02-14
  • 网络出版日期:  2024-05-09
  • 刊出日期:  2024-03-14

目录

/

返回文章
返回