基于条件均值反应谱的特大地震强震记录的选取及调整方法

李琳, 温瑞智, 周宝峰, 史大成

李琳, 温瑞智, 周宝峰, 史大成. 2013: 基于条件均值反应谱的特大地震强震记录的选取及调整方法. 地震学报, 35(3): 380-389. DOI: 10.3969/j.issn.0253-3782.2013.03.009
引用本文: 李琳, 温瑞智, 周宝峰, 史大成. 2013: 基于条件均值反应谱的特大地震强震记录的选取及调整方法. 地震学报, 35(3): 380-389. DOI: 10.3969/j.issn.0253-3782.2013.03.009
Li Lin, Wen Ruizhi, Zhou Baofeng, Shi Dacheng. 2013: Selection and scaling of ground motion records for great scenario earthquakes based on the conditional mean spectrum. Acta Seismologica Sinica, 35(3): 380-389. DOI: 10.3969/j.issn.0253-3782.2013.03.009
Citation: Li Lin, Wen Ruizhi, Zhou Baofeng, Shi Dacheng. 2013: Selection and scaling of ground motion records for great scenario earthquakes based on the conditional mean spectrum. Acta Seismologica Sinica, 35(3): 380-389. DOI: 10.3969/j.issn.0253-3782.2013.03.009

基于条件均值反应谱的特大地震强震记录的选取及调整方法

基金项目: 中国地震局基本科研业务专项(2011B06)资助.
详细信息
    通讯作者:

    温瑞智, E-mail:ruizhi@iem.net.cn

  • 中图分类号: P315

Selection and scaling of ground motion records for great scenario earthquakes based on the conditional mean spectrum

  • 摘要: 在PEER地震动数据库(PGMD)的基础上, 结合近几年国内外特大地震的地面运动记录, 建立了地面运动数据库, 同时根据日本MW9.0特大地震获得的141组记录进行统计回归建立加速度反应谱衰减关系, 并采用条件均值反应谱法, 即设定地震与结构概率需求结合的方法选择地面运动. 选波实例表明, 当设定地震为特大地震时, 基于条件均值反应谱法选取地面运动记录时, 扩展数据库中大震记录并建立符合大震记录加速度反应谱的衰减关系是十分必要与迫切的. 该思路为进一步研究结构动态时程分析中地面运动记录选取问题及所选记录提供了依据.
    Abstract: In this paper, PEER ground motion database(PGMD) at the Pacific earthquake engineering research center (PEER) was updated by 141 groups of ground motion records in Japan Tohoku earquake on March 11, 2011, building an attenuation model of acceleration response spectrum of MW9.0, having expanded the limitation of this database. Following the disaggregation results from probabilistic seismic hazard analysis, the scenario earthquake and the conditional mean spectrum (CMS) were set up as the target requirement and the selection, and scaling of ground motions for the great scenario earthquake was addressed finally. The results show that the expanded database could reflect the different selection and scaling of strong motion records in great earthquakes, and the suggested method could be applied to the structural spectrum analysis.
  • 图  1   条件均值反应谱和一致概率反应谱示意图(1g=9.8 m/s2)

    Figure  1.   Conditional mean spectrum and uniform hazard spectrum (1g=9.8 m/s2)

    图  2   强震记录参数分布图

    Figure  2.   Distribution of strong-motion parameters

    图  3   K-NET台站分布图

    Figure  3.   Location of K-NET strong-motion stations

    图  4   实际记录与BA08衰减关系对比. (a) R=10 km; (b) R=200 km

    Figure  4.   Comparison of magnitude 9.0 ground motion records in Japan with BA08 attenuation model of acceleration response spectrum. (a) R=10 km; (b) R=200 km

    图  5   实际记录与CB08衰减关系对比.

    (a) R=10 km; (b) R=200 km

    Figure  5.   Comparison of magnitude 9.0 ground motion records in Japan with CB08 attenuation model of acceleration response spectrum.

    (a) R=10 km; (b) R=200 km

    图  6   实际记录与LL衰减关系对比

    (a) R=10 km; (b) R=100 km

    Figure  6.   Comparison of magnitude 9.0 ground motion records in Japan with LL attenuation model of acceleration response spectrum

    (a) R=10 km; (b) R=200 km

    图  7   MW9.0条件均值反应谱

    Figure  7.   Magnitude 9.0 conditional mean spectrum

    图  8   选波结果中的放缩系数与地震动参数的相关性分析

    (a) 震级-放缩系数; (b) 断层距-放缩系数; (c) 剪切波速-放缩系数; (d) PGA-放缩系数; (e) PGV-放缩系数; (f) PGD-放缩系数

    Figure  8.   Logarithmic linear correlation between scalar factors and earthquake intensity parameters

    (a) Earthquake magnitude-scalar factor; (b) Fault distance-scalar factor; (c) vS30-scalar factor; (d) PGA-scalar factor; (e) PGV-scalar factor; (f) PGD-scalar factor

    表  1   LL衰减关系回归系数

    Table  1   Regression coefficient of LL attenuation model of acceleration response spectrum

    下载: 导出CSV

    表  2   扩展数据库选波结果

    Table  2   The results of PGMD expanded 9.0 magnitude ground motion records

    下载: 导出CSV
  • 耿淑伟. 2005. 抗震设计规范中地震作用的规定[D]. 哈尔滨: 中国地震局工程力学研究所: 3-9.
    胡聿贤. 2006. 地震工程学[M]. 北京: 地震出版社: 133-134.
    王刚. 2010. 地震波选择方法, 工具, 及其在基于性能的抗震设计中的应用[C]//第四届粤港澳地震科技研讨会. 香港: 香港天文台: 9.
    温瑞智, 周宝峰, 史大成, 任叶飞. 2011. 日本MW9.0地面运动观测与记录初步分析[J]. 国际地震动态, (4): 16-21.

    Abrahamson N A, Silva W J. 2008. Summary of the Abrahamson & Silva NGA groundmotion relations[J]. Earthq Spectra, 24(1): 67-97.

    Baker J W, Cornell C A. 2005. A vector-valued ground motion intensity measure consisting of spectral acceleration and epsilon[J]. Earthq Eng Struct D, 34(10): 1193-1217.

    Baker J W, Cornell C A. 2006a. Spectral shape, epsilon and record selection[J]. Earthq Eng Struct D, 35(9): 1077-1095.

    Baker J W, Cornell C A. 2006b. Correlation of response spectral values for multi-component ground motions[J]. Bull Seism Soc Amer, 96(1): 215-227.

    Boore D. 2008. TSPP-A Collection of FORTRAN Programs for Processing and Manipulating Time Series[R]. U S Geological Survey Open-File Report.

    Boore D M, Atkinson G M. 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV, and 5% damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthq Spectra, 24(1): 99-138.

    Campbell K W, Bozorgnia Y. 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD, and 5% damped linear elastic response spectra for periods ranging from 0.01s to 10.0 s[J]. Earthq Spectra, 24(1): 139-171.

    Chiou B S J, Youngs R R. 2008. Chiou-Youngs NGA ground motion relations for the geometric mean horizontal component of peak and spectral ground motion parameters[J]. Earthq Spectra, 24(1): 173-215.

    Cornell C A. 2006. Should uniform hazard spectra be used for design? How should design response spectra be determined considering uniform hazard spectra from design maps and hazard deaggregation data?[R]. Proceedings of the Third ATC-35/USGS National Earthquake Ground Motion Mapping Workshop. San Mateo, December 7-8.

    Housner G W. 1975. Measure of Severity of Earthquake Ground Shaking[R]. 2nd US NCEE. Ann Arbor, Michgan.

    Idriss I M. 2008. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes[J]. Earthq Spectra, 24(1): 217-242.

    Jayaram N, Lin T, Baker J W. 2011. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance[J]. Earthq Spectra, 27(3): 797-815.

  • 期刊类型引用(3)

    1. 张瑞青,况春利,张笑晗,李永华. 沉积层结构被动源探测方法及其在典型盆地的应用. 地球与行星物理论评(中英文). 2023(01): 12-26 . 百度学术
    2. 荣棉水,王继鑫,李小军,刘奥懿,孔小山,李航. 场地土层速度结构的背景噪声反演方法及其应用. 地球物理学报. 2023(02): 530-545 . 百度学术
    3. 董耀,李光辉,高鹏举,任静,肖娟. 微动勘查技术在地热勘探中的应用. 物探与化探. 2020(06): 1345-1351 . 百度学术

    其他类型引用(1)

图(8)  /  表(2)
计量
  • 文章访问数:  606
  • HTML全文浏览量:  322
  • PDF下载量:  9
  • 被引次数: 4
出版历程
  • 收稿日期:  2012-03-07
  • 修回日期:  2012-09-04
  • 发布日期:  2013-04-30

目录

    /

    返回文章
    返回