广东及其邻域噪声面波层析成像

沈玉松, 康英

沈玉松, 康英. 2014: 广东及其邻域噪声面波层析成像. 地震学报, 36(5): 826-836. DOI: 10.3969/j.issn.0253-3782.2014.05.007
引用本文: 沈玉松, 康英. 2014: 广东及其邻域噪声面波层析成像. 地震学报, 36(5): 826-836. DOI: 10.3969/j.issn.0253-3782.2014.05.007
Shen Yusong, Kang Ying. 2014: Surface wave tomography of Guangdong and its adjacent areas from ambient seismic noise. Acta Seismologica Sinica, 36(5): 826-836. DOI: 10.3969/j.issn.0253-3782.2014.05.007
Citation: Shen Yusong, Kang Ying. 2014: Surface wave tomography of Guangdong and its adjacent areas from ambient seismic noise. Acta Seismologica Sinica, 36(5): 826-836. DOI: 10.3969/j.issn.0253-3782.2014.05.007

广东及其邻域噪声面波层析成像

基金项目: 广东省科技计划项目(20090308)、地震公益性行业科研专项(201308008)和地震科技星火计划(XH13019)共同资助.
详细信息
    通讯作者:

    沈玉松, e-mail: sysshen@gddsn.org.cn

  • 中图分类号: P315.3+1

Surface wave tomography of Guangdong and its adjacent areas from ambient seismic noise

  • 摘要: 通过收集广东及其邻域104个固定地震台站近10个月的垂直分量连续波形数据资料, 使用地震背景噪声互相关格林函数方法, 获得了大部分台站对的背景噪声互相关曲线. 基于这些对称叠加的互相关曲线, 利用时频分析方法, 进一步提取了该地区周期为5—40 s的基阶瑞雷波群速度频散曲线. 其噪声来源分析结果显示: 广东及其邻域的噪声场来源有很强的方向性, 短周期(5—10 s)噪声主要来自东南方向, 范围基本与海岸线分布一致, 可能是由于近海水陆相互作用产生的;较长周期 (15—30 s) 噪声主要来自三大洋的方位. 以这些提取的噪声面波资料为基础, 采用噪声面波层析成像方法反演得到了该地区周期为5—28 s的瑞雷波群速度层析成像图, 从该图可以看出, 广东及其邻域地下结构的横向变化总体较小, 沉积层厚度较薄, 地壳中可能普遍存在一个低速层;从研究区历史地震的分布及其表层地质构造的发育特征来看, 地震主要分布在高、低速过渡带附近, 表明面波群速度与地震之间具有较强的耦合关系;从群速度的低速异常特征来看, 广东及其邻域普遍分布的温泉和高地热主要受深部构造的控制和影响.
    Abstract: We obtain the ambient noise cross-correlation curves for most of the station-pairs using 10 months of continuous data from the 104 permanent seismic stations of the Guangdong seismic network and its surrounding regions. Based on these symmetrically superimposed cross-correlation curves, we complete Rayleigh wave group velocity dispersion measurements for the periods from 40 s down to about 5 s using time-frequency analysis method. Ambient noise source analyses show that in Guangdong and its neighbor areas, sources of noise field has a strong directionality. Short-period noise (5—10 s) is mainly from the southeast, and its distribution is consistent with the scope of the coastline, so it may be caused by interaction of coastal land and water. Longer-period noise (15—30 s) mainly comes from the orientation of the Pacific, Atlantic, Indian Oceans. Furthermore, we obtain the Rayleigh wave group velocity distribution maps in the whole studied area for the periods from 5 s to 28 s using the ambient surface wave tomography algorithm. The tomographic results revealed that in Guangdong and its adjacent areas the crustal lateral variation is small, and the surface sediment thickness is thinner, indicating that there may be a widespread low-velocity layer in the crust. According to the characteristics of history earthquakes and surface geological structure, it can be obtained that earthquakes are mainly distributed in the vicinity of high- and low-velocity transitional zone, suggesting there is a strong coupling relationship between surface wave velocity and earthquakes. From low group velocity anomaly, it is inferred that the high geothermal and hot springs widely distributed in Guangdong and its neighbor areas is mainly under the control and influence of the deep structure.
  • 图  1   用于噪声互相关提取的台站分布图细黑线为省界,粗黑线为断层分布(邓起东,2007),白色粗虚线为从CHZ台到SCD台的大圆路径

    Figure  1.   Distribution of seismic stations used for ambient noise correlation Thin dark lines denote provincial boundaries,thick dark lines denote faults(Deng,2007),the thick white dashed line from the station CHZ to SCD indicates the selected great circle path for Fig.2

    图  2   瑞雷波经验格林函数、噪声强度方位分布及噪声互相关频散曲线测量图 (a)MEZ台与其它台站之间的噪声互相关曲线;(b)CHZ-SCD台站对之间的经验格林函数在不同周期段的带通滤波;(c)不同周期段的噪声源方位分布;(d)CHZ-SCD台站对之间的瑞雷波群速度频散曲线的测量.白色实线表示实测群速度值,黑色虚线表示基于华南地壳速度结构模型(郑圻森等,2003)的理论群速度值

    Figure  2.   Example of Rayleigh wave empirical Green’s function,orientation distribution of noise intensity and dispersion measurements obtained from ambient seismic noise correlations (a)Ambient noise correlations between the station MEZ and other stations;(b)Empirical Green’s function filtered in different frequency b and s for the CHZ-SCD path;(c)Orientation distribution of noise intensities in different frequency b and s;(d)Rayleigh wave group velocity dispersion curve for the CHZ-SCD path.The white solid line represents the measured value,the black dashed curve is the theoretical value from the South China crustal velocity model(Zheng et al,2003)

    图  3   不同周期测量得到的频散路径数分布(a)和0.25°×0.25°网格条件下周期为10 s时的频散路径密度分布(b).在周期为5—28 s范围内,频散路径的密度分布在空间上类似

    Figure  3.   (a)Distribution of the number of dispersion paths for different periods;(b)Ray density map for the period of 10 s,the ray density is the number of rays passing through a 0.25 degree by 0.25 degree cell.In the period range of 5—28 s the ray coverage is similar in space

    图  4   1°×1°分辨率的检测板(a)和华南地壳速度结构模型及其群速度随深度敏感核(b)

    Figure  4.   >(a)The checkboard for 1°×1° resolution;(b)The sensitive kernel of group velocity with depth based on the South China crustal velocity model(left panel)

    图  5   周期为5,8,15 s和28 s的检测板层析成像结果

    Figure  5.   The tomography results of checkboard test at periods of 5,8,15 and 28 s

    图  6   周期为5,8,15 s和28 s的瑞雷波群速度层析成像图 图中黑色小点表示该地区1970年以来M≥1.0的地震分布

    Figure  6.   Rayleigh wave group velocities at periods of 5,8,15 and 28 s where the small black dot indicates historical earthquakes with M≥1.0 in the region since 1970

  • 陈恩民, 黄咏茵. 1984. 华南十九次强震暨南海北部陆缘地震带概述[J]. 华南地震,4 (1): 11-32.

    Chen E M, Huang Y Y. 1984. Overview on seismic belt along the northern South China Sea continental margin with the nineteen strong earthquakes in South China[J]. South China Journal of Seismology,4 (1): 11-32 (in Chinese).

    邓起东. 2007. 中国活动构造图[M]. 北京: 地震出版社: 1-2.

    Deng Q D. 2007. Map of Active Tectonics in China[M]. Beijing: Seismological Press: 1-2 (in Chinese).

    房立华. 2009. 华北地区瑞利面波噪声层析成像研究[D]. 北京: 中国地震局地球物理研究所: 41-73.

    Fang L H. 2009. Rayleigh Wave Tomography in North-China from Ambient Seismic Noise[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 41-73 (in Chinese).

    黄晖, 米宁, 徐鸣洁, 王良书, 李华, 于大勇. 2010. 福建地区地壳上地幔S波速度结构与泊松比[J]. 高校地质学报,16 (4): 465-474.

    Huang H, Mi N, Xu M J, Wang L S, Li H, Yu D Y. 2010. S-wave velocity structures of the crust and uppermost mantle, and Poisson's ratios in Fujian Province[J]. Geological Journal of China Universities,16(4): 465-474 (in Chinese).

    康英, 杨选, 黄文辉, 陈杏, 陈贵美, 林伟, 吴华灯. 2007. 阳江地区地震双差定位及其活动图像分析[J]. 中国地震,23 (3): 295-302.

    Kang Y, Yang X, Huang W H, Chen X, Chen G M, Lin W, Wu H D. 2007. Analysis on high-resolution hypocenter location and activity image of Yangjiang earthquake sequences[J]. Earthquake Research in China,23(3): 295-302 (in Chinese).

    沈玉松, 康英, 徐果明. 2013. 广东及其邻域的地壳厚度和泊松比分布[J]. 中国地震,29 (2): 210-218.

    Shen Y S, Kang Y, Xu G M. 2013. The crustal thickness and Poisson's ratio distribution in Guangdong and its adjacent areas[J]. Earthquake Research in China,29(2): 210-218 (in Chinese).

    田有, 赵大鹏, 孙若昧, 滕吉文. 2007. 1992年美国加州兰德斯地震: 地壳结构不均匀性对地震发生的影响[J]. 地球物理学报,50 (5): 1488-1496.

    Tian Y, Zhao D P, Sun R M, Teng J W. 2007. The 1992 Landers earthquake: Effect of crustal heterogeneity on earthquake generation[J]. Chinese Journal of Geophysics,50 (5): 1488-1496 (in Chinese).

    魏柏林. 2001. 东南沿海地震活动特征[M]. 北京: 地震出版社: 1-58.

    Wei B L. 2001. The Characteristics of Seismicity in Southeast Coastal Region[M]. Beijing: Seismological Press: 1-58 (in Chinese).

    熊绍柏, 金东敏, 孙克忠, 邹以生, 樊叙邦, 杜小刚. 1991.福建漳州地热田及其邻近地区的地壳深部构造特征[J]. 地球物理学报,34 (1): 55-63.

    Xiong S B, Jin D M, Sun K Z, Zou Y S, Fan X B, Du X G. 1991. Some characteristics of deep structure of the Zhangzhou geothermal field and it's neighbourhood in the Fujian province[J]. Acta Geophysica Sinica,34 (1): 55-63 (in Chinese).

    姚伯初, 曾维军, 陈艺中, 张锡林. 1994. 南海北部陆缘东部的地壳结构[J]. 地球物理学报,37 (1): 27-35.

    Yao B C, Zeng W J, Chen Y Z, Zhang X L. 1994. The crustal structure in the eastern part of the northern margin of the South China sea[J]. Acta Geophysica Sinica,37(1): 27-35 (in Chinese).

    叶秀薇, 刘锦, 胡秀敏. 2009. 广东阳江地震序列双差法重新定位结果分析[J]. 大地测量与地球动力学,29 (6): 60-63.

    Ye X W, Liu J, Hu X M. 2009. Relocation of Yangjiang earthquake sequences with double-difference location algorithm[J]. Joural of Geodesy and Geodynamics,29 (6): 60-63 (in Chinese).

    尹周勋, 赖明惠, 熊绍柏, 刘宏兵, 滕吉文, 孔祥儒. 1999. 华南连县-博罗-港口地带地壳结构及速度分布的爆炸地震探测结果[J]. 地球物理学报,42 (3): 383-392.

    Yin Z X, Lai M H, Xiong S B, Liu H B, Teng J W, Kong X R. 1999. Crustal structure and velocity distribution from deep seismic sounding along the profile of Lianxian-Boluo-Gangkou in South China[J]. Chinese Journal of Geophy-sics,42 (3): 383-392 (in Chinese).

    郑圻森, 朱介寿, 宣瑞卿, 蔡学林. 2003. 华南地区地壳速度结构分析[J]. 沉积与特提斯地质,23 (4): 9-13.

    Zheng Q S, Zhu J S, Xuan R Q, Cai X L. 2003. An approach to the crustal velocities in Southern China[J]. Sedimentary Geology and Tethyan Geology,23(4): 9-13 (in Chinese).

    Bensen G D, Ritzwoller M H, Barmin M P, Levshin A L, Lin F, Moschetti M P, Shapiro N M, Yang Y. 2007. Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements[J]. Geophys J Int,169 (3): 1239-1260.

    Brenguier F, Shapiro N M, Campillo M, Nercessian A, Ferrazzini V. 2007. 3-D surface wave tomography of the Piton de la Fournaise volcano using seismic noise correlations [J]. Geophys Res Lett,34 (2): L02305. doi:10.1029/2006GL028586.

    Campillo M. 2006. Phase and correlation in 'Random' seismic fields and the reconstruction of the Green function[J]. Pure Appl Geophys,163 (2/3): 475-502.

    Derode A, Tourin A, Fink M. 2001. Random multiple scattering of ultrasound:Ⅱ. Is time reversal a self averaging process? [J]. Phys Rev E,64 (3): 36606-36618.

    Derode A, Larose E, Tanter M, Rosny J, Tourin1 A, Campillo M, Fink M. 2003. Recovering the Green's function from field-field correlations in an open scattering medium[J]. J Acoust Soc Am,113 (6): 2973-2976.

    Gouédard P, Stehly L, Brenguier F, Campillo M, Colin de Verdière Y, Larose E, Margerin L, Roux1 P, Sánchez-Sesma F J, Shapiro N M, Weaver R L. 2008. Cross-correlation of random fields: Mathematical approach and applications[J]. Geophys Pros,56 (3): 375-393.

    Larose E, Derode S, Campillo M, Fink M. 2004. Imaging from one-bit correlations of wideband diffuse wave fields[J]. J Appl Phys,95 (12): 8393-8399.

    Levshin A, Ratnikova L, Berger J. 1992. Peculiarities of surface-wave propagation across central Eurasia[J]. Bull Seismol Soc Am,82 (3): 2464-2493.

    Lin F C, Ritzwoller M H, Townend J, Bannister S, Savage M K. 2007. Ambient noise Rayleigh wave tomography of New Zealand[J]. Geophys J Int,170 (2): 649-666.

    Lobkis O I, Weaver R L. 2001. On the emergence of the Green's function in the correlations of a diffuse field[J].. J Acoust Soc Am, 110 (6): 3011-3017

    Lobkis O I, Weaver R L. 2001. On the emergence of the Green's function in the correlations of a diffuse field[J]. J Acoust Soc Am,110 (6): 3011-3017.

    Rawlinson N. 2008. FMST: A Spherical Shell (Surface Wave) Tomography Code for Mapping Traveltime Residuals as 2-D Variations in Wavespeed. Version 1.1[CP]. Australian: Australian National University.

    Sabra K G, Roux P, Kuperman W A. 2005a. Arrival time structure of the time-averaged ambient noise cross-correlation function in an oceanic waveguide[J]. J Acoust Soc Am,117 (1): 164-174.

    Sabra K G, Gerstoft P, Roux P, Kuperman W A, Fehler M C. 2005b. Surface wave tomography from microseisms in Southern California[J]. Geophys Res Lett,32 (14): L14311. doi:10.1029/2005GL023155.

    Sabra K G, Gerstoft P, Roux P, Kuperman W A, Fehler M C. 2005c. Extracting time-domain Green's function estimates from ambient seismic noise[J]. Geophys Res Lett,32 (3): L03310. doi:10.1029/2004GL021862.

    Shapiro N, Campillo M, Stehly L, Ritzwoller M H. 2005. High-resolution surface-wave tomography from ambient seismic noise[J]. Science,307 (5715): 1615-1618.

    Stehly L, Campillo M, Shapiro N M. 2006. A study of the seismic noise from its long range correlation properties[J]. J Geophys Res,111 (B10): B10306. doi:10.1029/2005JB004237.

    Weaver R L. 2005. Information from seismic noise[J]. Science,307 (5715): 1568-1569. doi:10.1126/science.1109834.

    Yang Y J, Ritzwoller M H, Levshin A L, Shapiro N M. 2007. Ambient noise Rayleigh wave tomography across Europe[J]. Geophys J Int,168 (1): 259-274.

    Yao H J, van der Hilst R D, de Hoop M V. 2006. Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: Ⅰ. Phase velocity maps[J]. Geophys J Int,166 (2): 732-744.

    Zhang Z J, Wang Y H. 2007. Crustal structure and contact relationship revealed from deep seismic sounding data in South China[J]. Phys Earth Planet Inter,165 (1/2): 114-126.

    Zheng S H, Sun X L, Song X D, Yang Y J, Ritzwoller M H. 2008. Surface wave tomography of China from ambient seismic noise[J]. Geochem Geophys Geosyst,9 (5): Q0502. doi:10.1029/2008GC001981.

    Zheng Y, Shen W, Zhou L, Yang Y, Xie Z, Ritzwoller M H. 2011. Crust and uppermost mantle beneath the North China Craton, northeastern China, and the Sea of Japan from ambient noise tomography[J]. J Geophys Res,116 (B12): B12312. doi:10.1029/2011JB008637.

    Zhou L Q, Xie J Y, Shen W S, Zheng Y, Yang Y J, Shi H X, Ritzwoller M H. 2012. The structure of the crust and uppermost mantle beneath South China from ambient noise and earthquake tomography[J]. Geophys J Int,189 (3): 1565-1583.

图(6)
计量
  • 文章访问数:  827
  • HTML全文浏览量:  249
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-10
  • 修回日期:  2014-05-06
  • 发布日期:  2014-08-31

目录

    /

    返回文章
    返回