Energy magnitude determination of moderate-strong earthquakes
-
摘要: 本文根据地震波衰减特性,开展了利用宽频带地震波形数据测定地震波能量ES和能量震级Me的方法研究。利用震中距处于20°—98°范围内的宽频带远震P波波形数据,测定了4次国外和4次国内中强震的能量震级Me,并对其面波震级MS、矩震级MW及能量震级Me进行了分析对比。结果表明:面波震级MS表示的是地震在某一固定频率所辐射的地震波能量大小;矩震级MW与地震所产生的断层长度、断层宽度、震源破裂的平均位错量等静态构造效应密切相关;而能量震级Me反映的是震源动态特征,与地震震源的动力学特性密切相关。由于地震是以地震波形式辐射,能量主要集中在震源谱的拐角频率附近,因此能量震级Me更适合描述地震的破坏性。由此可见,联合测定面波震级MS,矩震级MW和能量震级Me对于地震定量研究以及地震灾害与风险评估具有重要作用。
-
关键词:
- 地震波能量 /
- 能量震级 /
- 宽频带远震P波波形数据 /
- 震源动态特征 /
- 震源谱
Abstract: This paper, based on the seismic wave attenuation characteristics, explores a method for utilizing broadband seismic waveform data to measure seismic energy ES and energy magnitude Me. The energy magnitudes Me of four overseas and four domestic moderate-strong earthquakes are measured by using broadband teleseismic P waveform data with epicentral distance in the range of 20°−98°. The comparison of surface wave magnitude MS, moment magnitude MW and energy magnitude Me of several earthquakes shows that: surface wave magnitude MS represents the magnitude of the energy of seismic wave radiating at a fixed frequency; the moment magnitude MW is closely related to the static structural effects such as the length of fault, the width of fault and the average dislocation amount of the source rupture produced by the earthquake; the energy magnitude Me reflects source dynamic characteristics and is closely related to the dynamic characteristics of the seismic source. The energy radiated by the earthquake in the form of seismic waves is mainly concentrated near the corner frequency of the source spectrum, so the energy magnitude Me is more suitable to describe the destructiveness of the earthquake. Therefore, joint determination of surface wave magnitude MS, moment magnitude MW and energy magnitude Me are of great significance for quantifying and evaluating the disasters caused by earthquakes or tsunamis. -
-
表 1 计算九寨沟地震能量震级Me的单台数据
Table 1 Single station data for calculating energy magnitude Me of Jiuzhaigou earthquake
台站名 震中距/° Me 台站名 震中距/° Me 台站名 震中距/° Me IU.MAKZ 21.46 7.02 IU.MBWA 56.42 6.22 IU.PAB 81.55 6.18 BK.CMB 97.75 6.66 IU.WAKE 57.19 6.47 IU.FUNA 82.63 6.21 II.AAK 24.86 6.70 IU.KBS 57.87 6.24 IU.KIP 84.85 6.31 II.KURK 25.44 6.45 IU.ADK 58.32 6.46 II.TAU 85.86 6.34 IU.MAJO 28.23 6.36 IU.PMG 59.25 6.16 IU.LSZ 86.81 6.12 II.SIMI 28.57 6.50 II.MSEY 59.38 6.17 II.MSVF 87.12 6.66 II.BRVK 31.06 6.19 II.WRAB 60.58 6.06 IU.POHA 87.71 6.53 II.ERM 32.05 6.08 II.KWAJ 63.29 6.58 II.FFC 89.31 6.47 IU.YSS 32.37 6.12 IU.KONO 63.83 6.15 IU.COR 91.20 6.34 IU.DAV 32.98 6.76 II.ALE 64.10 6.08 IU.AFI 92.97 6.75 IU.YAK 33.20 6.30 IU.FURI 64.42 6.24 GT.LBTB 94.43 6.58 II.ARU 38.59 6.09 IU.MIDW 66.27 6.45 II.CMLA 94.85 6.48 IU.MA2 40.40 6.09 IU.CTAO 66.90 6.05 IU.XMAS 96.14 6.28 II.KAPI 41.07 6.31 IU.NWAO 67.31 6.56 IU.KOWA 96.41 6.95 IU.GUMO 42.06 6.53 IU.COLA 67.41 6.12 IU.RAO 96.80 6.22 II.UOSS 42.10 6.25 IU.HNR 68.24 6.57 IU.TSUM 97.39 7.07 IU.PET 43.32 5.89 II.KDAK 68.99 6.36 碾子山 20.30 6.63 IU.GNI 47.05 6.22 II.BFO 69.18 5.94 五常 21.50 6.55 II.KIV 47.89 6.29 IU.KMBO 71.25 5.92 讷河 21.77 6.01 IU.BILL 49.33 6.47 IU.TARA 71.83 6.85 宾县 21.97 6.35 II.DGAR 50.38 6.52 II.ESK 71.91 6.02 宝清 21.98 6.47 II.OBN 50.66 6.18 II.BORG 73.18 6.28 靖宇 21.06 6.14 II.RAYN 51.60 6.23 II.ABPO 75.12 6.18 柳河 20.95 6.21 II.LVZ 51.76 6.03 II.MBAR 76.27 6.63 丰满 21.55 6.42 IU.KEV 54.58 5.97 IU.SFJD 77.95 6.41 抚松 20.65 6.31 IU.ANTO 55.99 6.19 IU.JOHN 78.17 6.01 牡丹江 22.91 6.55 平均能量震级 6.3 注:表中10个中国台站的地震引自国家测震台网数据备份中心(2007)和郑秀芬等(2009)。 表 2 不同机构测定的4次国外和4次国内地震的各类震级
Table 2 Various magnitudes measured by different institutes for four overseas and four domestic earthquakes
发震时间 发震地点 震源深度
/km震源破裂
时间/s震源机制
类型MS
(CENC)MW
(GCMT)Me
(IRIS)Me
(本文)1991-04-22 哥斯达黎加 10.0 81 T 8.1 7.6 7.4 7.4 1992-09-02 尼加拉瓜 15.0 172 T 7.7 7.6 6.7 6.6 2006-11-15 昆士兰 39.0 133 T 8.0 8.3 7.7 7.7 2007-01-13 昆士兰 10.0 101 N 7.9 8.1 8.6 8.1 2008-05-12 四川汶川 12.8 126 TS 8.0 7.9 8.1 8.0 2013-04-20 四川芦山 12.2 39 T 7.0 6.6 6.7 6.6 2014-08-03 云南鲁甸 10.0 46 S 6.5 6.2 6.4 6.4 2017-08-08 四川九寨沟 9.0 43 S 7.0 6.5 6.4 6.3 注:T为逆断层,N为正断层,S为走滑断层,TS为包含走滑成分的逆断层。 -
陈培善. 1990. 地震定量的国际现状[J]. 地震地磁观测与研究, 11(3): 33-39. Chen P S. 1990. The international status of earthquake quantification[J]. Seismological and Geomagnetic Observation and Research, 11(3): 33-39 (in Chinese).
国家测震台网数据备份中心. 2007. 国家测震台网地震波形数据[DB/OL]. 中国地震局地球物理研究所. http://www. seisdmc.ac.cn. doi: 10.11998/SeisDmc/SN. Data Management Centre of China National Seismic Network. 2007. Waveform data of China national seismic network[DB/OL]. Institute of Geophysics, China Earthquake Administration. http://www.seisdmc.ac.cn. doi: 10.11998/SeisDmc/SN (in Chinese).
李志强, 侯建盛, 李洋, 苏桂武, 姜立新, 孙柏涛, 袁一凡, 林均岐. 2013. 2013年4月20日四川芦山MS7.0地震灾害特点分析[J]. 地震地质, 35(2): 398-410. doi: 10.3969/j.issn.0253-4967.2013.02.018 Li Z Q, Hou J S, Li Y, Su G W, Jiang L X, Sun B T, Yuan Y F, Lin J Q. 2013. Analysis on the Characteristics of the MS7.0 Lushan, Sichuan province, earthquake hazard on April 20, 2013[J]. Seismology and Geology, 35(2): 398-410 (in Chinese).
赵仲和. 2014. 2014年8月3日云南鲁甸M6.5地震的地震波能量[J]. 国际地震动态, (9): 24-28, 34. doi: 10.3969/j.issn.0235-4975.2014.09.007 Zhao Z H. 2014. Seismic energy of Ludian M6.5 earthquake, August 3, 2014[J]. Recent Developments in World Seismology, (9): 24-28, 34 (in Chinese).
郑秀芬, 欧阳飚, 张东宁, 姚志祥, 梁建宏, 郑洁.2009. " 国家测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J].地球物理学报, 52(5): 1412—1417. doi: 10.3969/j.issn.0001-5733.2009.05.031 Zheng X F, Ouyang B, Zhang D N, Yao Z X, Liang J H, Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake. Chinese Journal of Geophysics, 52(5):1412—1417(in Chinese).
中国地震局. 2013. 中国地震局发布四川省芦山" 4·20”7.0级强烈地震烈度图[EB/OL]. [2018−11−15]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5195229/index.html. China Earthquake Administration. 2013. China Earthquake Administration release the seismic intensity map of Lushan Sichuan M7.0 strong earthquake on April 20, 2017[EB/OL]. [2018-11-15]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5195229/index.html (in Chinese).
中国地震局. 2017. 中国地震局发布四川九寨沟7.0级地震烈度图[EB/OL]. [2018−11−15]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5206273/index.html. China Earthquake Administration. 2017. China Earthquake Administration release the seismic intensity map of Jiuzhaigou Sichuan M7.0 earthquake[EB/OL]. [2018-11-15]. https://www.cea.gov.cn/cea/xwzx/fzjzyw/5206273/index.html (in Chinese).
Aki K, Richards P G. 1980. Quantitative Seismology: Theory and Methods[M]. San Francisco: W. H. Freeman: 932.
Ammon C J, Kanamori H, Lay T. 2008. A great earthquake doublet and seismic stress transfer cycle in the central Kuril islands[J]. Nature, 451(7178): 561-565. doi: 10.1038/nature06521
Boatwright J, Choy G L. 1986. Teleseismic estimates of the energy radiated by shallow earthquakes[J]. J Geophys Res, 91(B2): 2095-2112. doi: 10.1029/JB091iB02p02095
Bormann P, Liu R F, Ren X, Gutdeutsch R, Kaiser D, Castellaro S. 2007. Chinese National Network magnitudes, their relation to NEIC Magnitudes, and recommendations for new IASPEI magnitude standards[J]. Bull Seismol Soc Am, 97(1B): 114-127. doi: 10.1785/0120060078
Bormann P, Saul J. 2008. The new IASPEI standard broadband magnitude mB[J]. Seismol Res Lett, 79(5): 698-705. doi: 10.1785/gssrl.79.5.698
Bormann P, Saul J. 2009a. Earthquake magnitude[G]//Encyclopedia of Complexity and Systems Science. Heidelberg: Springer: 2473−2496.
Bormann P, Saul J. 2009b. A fast, non-saturating magnitude estimator for great earthquakes[J]. Seism Res Lett, 80(5): 808-816. doi: 10.1785/gssrl.80.5.808
Choy G L, Boatwright J L. 1995. Global patterns of radiated seismic energy and apparent stress[J]. J Geophys Res, 100(B9): 18205-18228. doi: 10.1029/95JB01969
Choy G L, Boatwright J. 2007. The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute P-wave windows[J]. Bull Seismol Soc Am, 97(1A): S18-S24. doi: 10.1785/0120050623
Convers J A, Newman A V. 2011. Global evaluation of large earthquake energy from 1997 through mid-2010[J]. J Geophys Res, 116(B8): B08304.
Di Bona M, Rovelli A. 1988. Effects of bandwidth limitation on stress drop estimated from integrals of the ground motion[J]. Bull Seismol Soc Am, 78: 1818-1825.
Di Giacomo D, Grosser H, Parolai S, Bormann P, Wang R J. 2008. Rapid determination of Me for strong to great shallow earthquakes[J]. Geophys Res Lett, 35(10): L10308.
Di Giacomo D. 2010. Determination of the Energy Magnitude ME: Application to Rapid Response Purposes and Insights to Regional/Local Variabilities[D]. Potsdam: Universität Potsdam: 49−57.
Duda S J, Yanovskaya T B. 1993. Spectral amplitude-distance curves for P-waves: effects of velocity and Q-distribution[J]. Tectonophysics, 217(3/4): 255-265.
Goes S D B, Velasco A A, Schwartz S Y, Lay T. 1993. The April 22, 1991, Valle de la Estrella, Costa Rica (MW=7.7) earthquake and its tectonic implications: A broadband seismic study[J]. J Geophys Res, 98(B5): 8127-8142. doi: 10.1029/93JB00019
Gutenberg B, Richter C F. 1954. Seismicity of the Earth and Associated Phenomena[M]. 2nd ed. Princeton: Princeton University Press: 1−15.
Haskell N A. 1964. Total energy spectra density of elastic waves for propagating faults[J]. Bull Seismol Soc Am, 54(6): 1811-1841.
Ide S, Beroza G C. 2001. Does apparent stress vary with earthquake size?[J]. Geophys Res Lett, 28(17): 3349-3352. doi: 10.1029/2001GL013106
Kanamori H, Mori J, Hauksson E, Heaton T H, Hutton L K, Jones L M. 1993. Determination of earthquake energy-release and ML using TERRAscope[J]. Bull Seismol Soc Am, 83(2): 330-346.
Kanamori H, Kikuchi M. 1993. The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments[J]. Nature, 361(6414): 714-716. doi: 10.1038/361714a0
Kennett B L N, Engdahl E R, Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int, 122(1): 108-124. doi: 10.1111/gji.1995.122.issue-1
Lomax A, Michelini A, Piatanesi A. 2007. An energy-duration procedure for rapid determination of earthquake magnitude and tsunamigenic potential[J]. Geophys J Int, 170(3): 1195-1209. doi: 10.1111/gji.2007.170.issue-3
Montagner J P, Kennett B L N. 1996. How to reconcile body-wave and normal-mode reference Earth models[J]. Geophys J Int, 125(1): 229-248. doi: 10.1111/gji.1996.125.issue-1
NEIC. 1991. Today in earthquake history[EB/OL]. [2018−11−15]. https://earthquake.usgs.gov/learn/today/index.php? month=4&day=22.
NEIC. 1992. M7.7−near the coast of Nicaragua[EB/OL]. [2018−11−15]. https://earthquake.usgs.gov/earthquakes/eventpage/ usp0005ddn/executive.
NEIC. 2006. M8.3−Kuril Islands[EB/OL]. [2018−11−15]. https://earthquake.usgs.gov/earthquakes/eventpage/usp000exfn/executive.
NEIC. 2007. M8.1−east of the Kuril Islands[EB/OL]. [2018−11−15]. https://earthquake.usgs.gov/earthquakes/eventpage/ usp000f2ab/executive.
Newman A V, Okal E A. 1998. Teleseismic estimates of radiated seismic energy: the E/M0 discriminant for tsunami earthquakes[J]. J Geophys Res, 103(B11): 26885-26898. doi: 10.1029/98JB02236
Parolai S. 2009. Denoising of seismograms using the S transform[J]. Bull Seismol Soc Am, 99(1): 226-234. doi: 10.1785/0120080001
Richter C F. 1935. An instrumental earthquake magnitude scale[J]. Bull Seismol Soc Am, 25(1): 1-32.
Rudnicki J W, Freund L B. 1981. On energy radiation from seismic sources[J]. Bull Seismol Soc Am, 71(3): 583-595.
Singh S K, Ordaz M. 1994. Seismic energy release in Mexican subduction zone earthquakes[J]. Bull Seismol Soc Am, 84(5): 1533-1550.
Stockwell R G, Mansinha L, Lowe R P. 1996. Localization of the complex spectrum: the S transform[J]. IEEE Trans Signal Process, 44(4): 998-1001. doi: 10.1109/78.492555
Venkataraman A, Kanamori H. 2004a. Effect of directivity on estimates of radiated seismic energy[J]. J Geophys Res, 109(B4): B04301.
Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bull Seismol Soc Am, 89(3): 733-741.
-
期刊类型引用(3)
1. 顾春生,许书刚,杨鹏,唐鑫,张其琪,李浩民. 基于LASSO-BP神经网络模型的滆湖组黏性土抗剪强度预测. 世界地质. 2023(03): 577-587 . 百度学术
2. 陈帅,苗则朗,吴立新. 顾及坡体赋存环境的概率地震滑坡危险性制图. 测绘学报. 2023(09): 1548-1561 . 百度学术
3. 陈帅,苗则朗,吴立新. 基于修正岩土体强度参数的简化纽马克位移法地震滑坡危险性快速评估技术. 地震学报. 2022(03): 512-527 . 本站查看
其他类型引用(1)