中国东南部地幔高导层的埋藏深度

陈伯舫

陈伯舫. 1986: 中国东南部地幔高导层的埋藏深度. 地震学报, 8(2): 172-178.
引用本文: 陈伯舫. 1986: 中国东南部地幔高导层的埋藏深度. 地震学报, 8(2): 172-178.
1986: BURIED DEPTH OF THE HIGH CONDUCTIVITY LAYER BENEATH THE REGION OF SOUTH-EAST CHINA. Acta Seismologica Sinica, 8(2): 172-178.
Citation: 1986: BURIED DEPTH OF THE HIGH CONDUCTIVITY LAYER BENEATH THE REGION OF SOUTH-EAST CHINA. Acta Seismologica Sinica, 8(2): 172-178.

中国东南部地幔高导层的埋藏深度

BURIED DEPTH OF THE HIGH CONDUCTIVITY LAYER BENEATH THE REGION OF SOUTH-EAST CHINA

  • 摘要: 本文用武汉、佘山、广州、(山仑)坪四台的地磁日变化资料推断中国东南部下面地幔高导层的埋藏深度。研究方法是一维模型的磁场梯度法。结果:高导层的埋藏深度约为315km,高导层的电阻率约为9m。由于台站数量太少,结果的可靠性可能会受到一定影响。但这个埋藏深度与力武常茨[1]或行武毅[2]根据全球资料得出的平均高导层深度350km很接近。
    Abstract: The spatial gradient method was used in estimating the buried depth of high conductivity layer beneath the region of south-east China. Quiet daily magnetic variations recorded at four observatories, Wuhan, Zo-Se (Sheshan), Guangzhou and Lun-ping, were analysed in this study. The results indicate that beneath this region the buried depth of high conductivity layer in the mantle is 315 km, and its resistivity 9 m; the reliability of these data may be limited by the small number of observation points available. However, the depth of 315 km is basically consistent with that obtained from global analyses (see the article of Rikitake[1] or Yukutake[2]).
  • [1] Rikitake, T., Electromagnetism and the Earth's Interior, Elesevier, Amsterdam, 225, 1966.

    [2] Yukutake, T., Attenuation of geomagnetic secular variation through the conducting mantle or the earth, Bull. Earthq. Res. Inst., Tokyo Univ., 37, 13——32, 1959.

    [3] Berdichevsky, M. N., L. L. Van'Yan and E. B. Fainberg, Magnetic variation sounding using the spa——ce derivatives of the field, Geomagn. Aeron—— (Erag. Trans.) 9, 299——301, 1969.

    [4] Schmucker, U., Anomalies of gcbmagnetic variations in the southwestern United States, Basll. Scrrpps Inst. Oceanogr., Univ. of California, 13, 1970.

    [5] Woods, D. V, and F. E. M. Lilley, Geomagnetic induction in centrai Australia, J. Geomagn. Geoelec., 31, 449——458, 1979.

    [6] Lilley, F. E. M., D. V. Woods and M. N. Sloane, Electrical conductivity from Australian magneto——meter arrays using spatial gradient data, Phys. Earth Planet. Int., Z5, 202——209, 1981.

    [7] Alabi, A. O., Magnetometer array studies, Geophys. Surv., 6, 153——172, 1983.

    [8] Price, A. T., The theory of the magnetoteiiuric method when the source field is considered, J. Geophys. Res., 67, 1907——1918, 1962.

    [9] 陈伯舫,对"磁暴短周期感应场和佘山地区地慢电导率"一文的讨论,地球物理学报,26, 295——298, 1983.

    [10] Lilley, F. E. M., Running waves and standing ovaves in geomagnetic depth sounding, J. Geopsagn. Geoelec., 27, 491——504, 1975.

    [1] Rikitake, T., Electromagnetism and the Earth's Interior, Elesevier, Amsterdam, 225, 1966.

    [2] Yukutake, T., Attenuation of geomagnetic secular variation through the conducting mantle or the earth, Bull. Earthq. Res. Inst., Tokyo Univ., 37, 13——32, 1959.

    [3] Berdichevsky, M. N., L. L. Van'Yan and E. B. Fainberg, Magnetic variation sounding using the spa——ce derivatives of the field, Geomagn. Aeron—— (Erag. Trans.) 9, 299——301, 1969.

    [4] Schmucker, U., Anomalies of gcbmagnetic variations in the southwestern United States, Basll. Scrrpps Inst. Oceanogr., Univ. of California, 13, 1970.

    [5] Woods, D. V, and F. E. M. Lilley, Geomagnetic induction in centrai Australia, J. Geomagn. Geoelec., 31, 449——458, 1979.

    [6] Lilley, F. E. M., D. V. Woods and M. N. Sloane, Electrical conductivity from Australian magneto——meter arrays using spatial gradient data, Phys. Earth Planet. Int., Z5, 202——209, 1981.

    [7] Alabi, A. O., Magnetometer array studies, Geophys. Surv., 6, 153——172, 1983.

    [8] Price, A. T., The theory of the magnetoteiiuric method when the source field is considered, J. Geophys. Res., 67, 1907——1918, 1962.

    [9] 陈伯舫,对"磁暴短周期感应场和佘山地区地慢电导率"一文的讨论,地球物理学报,26, 295——298, 1983.

    [10] Lilley, F. E. M., Running waves and standing ovaves in geomagnetic depth sounding, J. Geopsagn. Geoelec., 27, 491——504, 1975.

  • 期刊类型引用(10)

    1. 马永,张海江,高磊,宋程,毕金孟,高也. 滇西地区地壳三维精细结构成像与构造特征研究. 地球物理学报. 2023(09): 3674-3691 . 百度学术
    2. 常英娜,梁春涛,曹飞煌,周鲁,廖江涛,陆威帆,王朝亮. 基于波场梯度法研究安宁河—则木河断裂带速度结构. 地球物理学报. 2022(08): 2886-2903 . 百度学术
    3. 张丽晓,闫俊岗,张双凤. 基于背景噪声的晋冀鲁豫交界地区瑞利波群速度层析成像. 地震. 2022(01): 155-168 . 百度学术
    4. 杨建文,叶泵,高琼,张华英,陈佳. 2021年云南漾濞M_S6.4地震前后主动源观测走时数据的变化. 地震工程学报. 2021(04): 767-776 . 百度学术
    5. 马永,张海江,高磊,毕金孟. 漾濞Ms6.4地震三维精细速度结构与地震活动研究(英文). Applied Geophysics. 2021(04): 579-591+595 . 百度学术
    6. 张演,郑定昌,林国良,吕帅. 基于三分量数据的云南地区背景噪声源分析. 地震研究. 2020(04): 689-700+768 . 百度学术
    7. ZhiGao Yang,XiaoDong Song. Ambient noise Love wave tomography of China. Earth and Planetary Physics. 2019(03): 218-231 . 必应学术
    8. 杨志高,陈运泰,张雪梅,宋晓东. 青藏高原东缘及东北缘S波速度结构和径向各向异性. 地球物理学报. 2019(12): 4554-4570 . 百度学术
    9. 周青云,陈俊磊. 气枪震源激发条件对走时变化观测结果的影响. 地震研究. 2018(02): 264-272+344 . 百度学术
    10. 谭夏露,房立华,王未来,吴建平. 安宁河-则木河断裂带及周边地区Rayleigh波群速度背景噪声成像研究. 中国地震. 2018(03): 400-413 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1050
  • HTML全文浏览量:  12
  • PDF下载量:  119
  • 被引次数: 20
出版历程
  • 发布日期:  2011-08-31

目录

    /

    返回文章
    返回