基于三重震相方法探测日本海俯冲区地幔转换带的速度结构

崔辉辉, 周元泽

崔辉辉, 周元泽. 2016: 基于三重震相方法探测日本海俯冲区地幔转换带的速度结构. 地震学报, 38(5): 659-670.
引用本文: 崔辉辉, 周元泽. 2016: 基于三重震相方法探测日本海俯冲区地幔转换带的速度结构. 地震学报, 38(5): 659-670.
Cui Huihui, Zhou Yuanze. 2016: Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications. Acta Seismologica Sinica, 38(5): 659-670.
Citation: Cui Huihui, Zhou Yuanze. 2016: Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications. Acta Seismologica Sinica, 38(5): 659-670.

基于三重震相方法探测日本海俯冲区地幔转换带的速度结构

基金项目: 

国家自然科学基金(41274092,41474070)资助

国家自然科学基金资助 41274092,41474070

详细信息
    通讯作者:

    周元泽: e-mail: yzzhou@ucas.ac.cn, yzzhou@gmail.com

  • 中图分类号: P315.3+1

Detecting the structure of the mantle transition zone in Japan subduction zone from the waveform triplications

  • 摘要: 本文基于中国数字地震台网记录的发生于日本北海道地区的一次中源地震的三重震相资料研究了日本海俯冲区地幔转换带的速度结构.结果表明,该区域P波速度结构与S波速度结构的一致性整体上较强.冷的西太平洋俯冲板块导致410 km间断面出现了10 km的抬升,660 km间断面出现了25 km的下沉;410 km和660 km间断面之上均存在与俯冲板块相关的高速层;660 km间断面下方存在厚度为65 km的低速异常.纵横波波速比vP/vS值在210—400 km深度范围内偏低,约为1.827,体现出海洋板块低泊松比的特征;在560—685 km深度范围内,该值偏高,约为1.831,可能预示地幔转换带底部含有一定量的水.
    Abstract: This paper applies the triplicated waveforms of an intermediate-depth earthquake at the Hokkaido of Japan, retrieved from the China Digital Seismograph Network, to mapping the structure of the mantle transition zone in Japan subduction zone. The results show that the P-wave velocity structure is consis-tent to S-wave velocity structure for the region as a whole. The cold subduction slab of the western Pacific Plate causes a 10 km uplift of the 410 km discontinuity and a 25 km depression of the 660 km discontinuity; atop the two discontinuities, there are high-velocity layers associated with the slab; below the 660 km discontinuity, there is a low-velocity anomaly with the thickness of 65 km. The seismic velocity ratio (vP/vS) shows a lower value (~1.827) zone at the depth range of 210—400 km, indicating the low Poisson’s ratio signature of the oceanic plate; and the velocity ratio shows a higher value (~1.831) zone at the depth range of 560—685 km, possibly implying the hydrous environment at the base of mantle transition zone.
  • 图  1   本文所用地震位置和台站分布图震源球标出了2011年10月21日中源地震的震中位置,黑色和红色三角形分别表示P波和S波三重震相所用台站,黑色和红色圆点分别为P波和S波射线拐点的地表投影;Ⅰ和Ⅱ为以方位角15°为间隔所划分的两个子区域;灰色线为板块边界(引自DeMets et al,1994),黑色虚线为和达-贝尼奥夫带等深线(引自Gudmundsson,Sambridge,1998)

    Figure  1.   Location of the earthquake and stations used in the study The beach ball represents the epicentral location of the intermediate-depth earthquake on 21 October 2011. Black and red triangles denote the stations for the P- and S-wave triplications,respectively. Black and red dots are the surface projections of P and S-wave turning points,respectively. I and II label two sub-regions divided by the azimuthal interval of 15°. Gray lines indicate the plate boundaries(DeMets et al,1994). Contours shown in black dashed lines represent the Wadati-Benioff Zone(Gudmundsson,Sambridge,1998)

    图  2   中源地震P波三重震相原理图

    (a)三重震相射线路径,包含了410上方的回折波(AB)、410之上的反射波(BC)、410下方的回折波(CD)、660之上的反射波(DE)和660下方的回折波(EF);(b)三重震相的折合走时及波形图,图中字母A-FMOO′是对走时曲线的标记,Δ表示震中距

    Figure  2.   Schematic illustration of the P-wave

    triplication for an intermediate-depth earthquake (a)The ray paths for the triplication,including the turning wave above the 410 km discontinuity(hereafter as 410) (AB),the reflection on the 410(BC),the turning wave below the 410(CD),the reflection on the 660 km discontinuity (hereafter as 660)(DE)and the turning wave below the 660(EF);(b)The reduced travel times and synthetic waveforms for the triplication. The traveltime curves are marked with the symbols A-FMO and O′,and Δ represents epicentral distance

    图  3   地震事件震源深度重定位

    (a)重定位所用台站分布;(b)震源球图解(Dziewonski et al,1981; Ekström et al,2012);(c)图(a)中台站所记录到的观测波形;(d)pP-P相对时差的残差均方根随震源扰动深度的变化

    Figure  3.   The focal depth relocation of the earthquake event

    (a)Distribution of the stations used in the relocation;(b)The focal mechanism(Dziewonski et al,1981;Ekström et al,2012);(c)Observed waveforms of the stations in Fig.(a);(d)Root mean square of time residuals of pP-P relative intervals versus focal depth perturbation

    图  4   Ⅰ和Ⅱ子区域P波波形拟合

    图(a)和(b)分别为Ⅰ子区域观测和合成P波波形图,图(c)和(d)分别为Ⅱ子区域观测和合成P波波形图,图(e)为P波速度模型IASP91(黑线)和JSP(红线).图(b)和(d)中合成波形为基于JSP模型合成,图(a)-(d)中黑色和红色折合走时曲线分别由IASP91和JSP模型计算所得

    Figure  4.   The P waveform fitting for sub-regions Ⅰand Ⅱ

    Figs.(a)and(b)show observed and synthetic P waveforms for the sub-region Ⅰ,respectively,and Figs.(c)and(d)show those for the sub-region Ⅱ,respectively. Fig.(e)shows the P-wave velocity models IASP91(black line)and JSP(red line). Synthetic waveforms in(b)and(d)are calculated with the JSP model,and in(a)-(d),black and red reduced traveltime curves are calculated with the IASP91 and JSP models,respectively

    图  5   Ⅰ和Ⅱ子区域S波波形拟合

    图(a)和(b)分别为Ⅰ子区域观测和合成S波波形图,图(c)和(d)分别为Ⅱ子区域观测和合成S波波形图, 图(e)为S波速度模型IASP91(黑色线条)and JSS(红色线条). 图(b)和(d)中合成波形是由JSS模型合成,图(a)-(d)中黑色和红色折合走时曲线分别是由IASP91和JSS模型计算所得

    Figure  5.   The S waveform fitting for sub-regions Ⅰand Ⅱ

    Figs.(a)and(b)show observed and synthetic S waveforms for the sub-region Ⅰ,respectively,and Figs.(c)and(d)show those for the sub-region Ⅱ,respectively. Fig.(e)shows the S-wave velocity models IASP91(black line)and JSS(red line). Synthetic waveforms in(b)and(d)are calculated with the JSS model,and in(a)-(d),black and red reduced traveltime curves are calculated with the IASP91 and JSS model,respectively

    图  6   410和660之上的P波和S波反射点分布图

    图(a)和(c)中黑色圆点分别为410和660之上的P波反射点,背景图像分别为GAP_P4模型(Obayashi et al,2013)在400 km和685 km深度的水平图像;图(b)和(d)中红色圆点分别为410和660之上的S波反射点,背景图像分别为S40RTS模型(Ritsema et al,2011)在400 km和685 km深度的水平图像

    Figure  6.   The location of P- and S-wave reflected points on the 410 and 660

    In Figs.(a)and(c),black dots are the P-wave reflected points on the 410 and 660,respectively; background images are the horizontal images from the GAP_P4 model(Obayashi et al,2013)at the depth of 400 km and 685 km,respectively. In Figs.(b)and(d),red dots are the S-wave reflected points on the 410 and 660,respectively; background images are the horizontal images from the S40RTS model(Ritsema et al,2011)at the depth of 400 km and 685 km,respectively

    表  1   地震事件震源参数表

    Table  1   Source parameters of the earthquake event

    年-月-日时:分:秒震源深度*/km北纬/°东经/°Mb
    2011-10-2108:02:37.62188.043.8729142.53156.0
    *经本文重定位的震源深度
    下载: 导出CSV
  • 李国辉, 眭怡, 周元泽. 2014. 基于P波三重震相的下扬子克拉通地幔转换带顶部低速层初探[J]. 地球物理学报, 57(7): 2362-2371. doi: 10.6038/cig20140730.

    Li G H, Sui Y, Zhou Y Z. 2014. Low-velocity layer atop the mantle transition zone in the lower Yangtze Craton from P waveform triplication[J]. Chinese Journal of Geophysics, 57(7): 2362-2371. doi:10.6038/cig20140730 (in Chinese).

    眭怡, 周元泽. 2015. 利用三重震相探测中国东部海域410 km深度低速层[J]. 地震学报, 37(1): 1-14. doi: 10.11939/jass.2015.01.001.

    Sui Y, Zhou Y Z. 2015. Low-velocity anomaly around 410 km beneath the Yellow and East China Seas with P wave triplications[J]. Acta Seismologica Sinica, 37(1): 1-14. doi:10.11939/jass.2015.01.001 (in Chinese).

    叶玲玲, 李娟. 2012. 东北地区660 km间断面附近波速结构研究[J]. 地震学报, 34(2): 137-146. http://www.dzxb.org/stat/ShowHtml?ContentID=28739

    Ye L L, Li J. 2012. Detecting velocity structure around 660-km discontinuity beneath northeastern China[J]. Acta Seismologica Sinica, 34(2): 137-146 (in Chinese). http://www.dzxb.org/stat/ShowHtml?ContentID=28739

    郑秀芬, 欧阳飚, 张东宁, 姚志祥, 梁建宏, 郑洁. 2009. “国家数字测震台网数据备份中心”技术系统建设及其对汶川大地震研究的数据支撑[J]. 地球物理学报, 52(5): 1412-1417. doi: 10.3969/j.issn.0001-5733.2009.05.031.

    Zheng X F, Ouyang B, Zhang D N, Yao Z X, Liang J H, Zheng J. 2009. Technical system construction of Data Backup Centre for China Seismograph Network and the data support to researches on the Wenchuan earthquake[J]. Chinese Journal of Geophysics, 52(5): 1412-1417. doi:10.3969/j.issn.0001-5733.2009.05.031 (in Chinese).

    周春银, 金振民, 章军锋. 2010. 地幔转换带: 地球深部研究的重要方向[J]. 地学前缘, 17(3): 90-113. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm

    Zhou C Y, Jin Z M, Zhang J F. 2010. Mantle transition zone: An important field in the studies of Earth’s deep interior[J]. Earth Science Frontiers, 17(3): 90-113 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201003010.htm

    Ai Y S, Zheng T Y, Xu W W, He Y M, Dong D. 2003. A complex 660 km discontinuity beneath northeast China[J]. Earth Planet Sci Lett, 212(1/2): 63-71. doi: 10.1016/S0012-821X(03)00266-8.

    Bassin C, Laske G, Masters G. 2000. The current limits of resolution for surface wave tomography in North America[J]. EOS Trans AGU, 81: F897. http://cn.bing.com/academic/profile?id=239093348&encoded=0&v=paper_preview&mkt=zh-cn

    Bina C R, Helffrich G. 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography[J]. J Geophys Res, 99(B8): 15853-15860. doi: 10.1029/94jb00462.

    Buland R, Chapman C H. 1983. The computation of seismic travel times[J]. Bull Seismol Soc Am, 73(5): 1271-1302. http://cn.bing.com/academic/profile?id=2277535123&encoded=0&v=paper_preview&mkt=zh-cn

    Cammarano F, Goes S, Vacher P, Giardini D. 2003. Inferring upper-mantle temperatures from seismic velocities[J]. Phys Earth Planet Inter, 138(3/4): 197-222. doi: 10.1016/S0031-9201(03)00156-0.

    Chu R S, Schmandt B, Helmberger D V. 2012. Upper mantle P velocity structure beneath the midwestern United States derived from triplicated waveforms[J]. Geochem Geophys Geosyst, 13(2): Q0AK04. doi: 10.1029/2011GC003818.

    Collier J D, Helffrich G R, Wood B J. 2001. Seismic discontinuities and subduction zones[J]. Phys Earth Planet Inter, 127(1/2/3/4): 35-49. doi: 10.1016/S0031-9201(01)00220-5.

    DeMets C, Gordon R G, Argus D F, Stein S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions[J]. Geophys Res Lett, 21(20): 2191-2194. doi: 10.1029/94gl02118.

    Deon F, Koch-Müller M, Rhede D, Wirth R. 2011. Water and iron effect on the P-T-x coordinates of the 410-km discontinuity in the Earth upper mantle[J]. Contr Mineral Petrol, 161(4): 653-666. doi: 10.1007/s00410-010-0555-6.

    Deuss A. 2007. Seismic observations of transition-zone discontinuities beneath hotspot locations[J]. Geolog Soc Am Spec Papers, 430: 121-136. doi: 10.1130/2007.2430(07).

    Dziewonski A M, Chou T A, Woodhouse J H. 1981. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J]. J Geophys Res, 86(B4): 2825-2852. doi: 10.1029/JB086iB04p02825.

    Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004-2010: Centroid-moment tensors for 13017 earthquakes[J]. Phys Earth Planet Inter, 200/201: 1-9. doi: 10.1016/j.pepi.2012.04.002.

    Fukao Y, Obayashi M, Nakakuki T, the Deep Slab Project Group. 2009. Stagnant slab: A review[J]. Annu Rev Earth Planet Sci, 37: 19-46. doi: 10.1146/annurev.earth.36.031207.124224.

    Fukao Y, Obayashi M. 2013. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity[J]. J Geophys Res, 118(11): 5920-5938. doi: 10.1002/2013JB010466.

    Gao Y, Suetsugu D, Fukao Y, Obayashi M, Shi Y T, Liu R F. 2010. Seismic discontinuities in the mantle transition zone and at the top of the lower mantle beneath eastern China and Korea: Influence of the stagnant Pacific slab[J]. Phys Earth Planet Inter, 183(1/2): 288-295. doi: 10.1016/j.pepi.2010.03.009.

    Gudmundsson , Sambridge M. 1998. A regionalized upper mantle (RUM) seismic model[J]. J Geophys Res, 103(B4): 7121-7136. doi: 10.1029/97jb02488.

    Hirose K. 2002. Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle[J]. J Geophys Res, 107(B4): 2078. doi: 10.1029/2001JB000597.

    Huang J L, Zhao D P. 2006. High-resolution mantle tomography of China and surrounding regions[J]. J Geophys Res, 111(B9): B09305. doi: 10.1029/2005JB004066.

    International Seismological Centre. 2012. On-line bulletin[EB/OL]. [2015-09-01]. http://www.isc.ac.uk/iscbulletin/search/bulletin/"> http://www.isc.ac.uk/iscbulletin/search/bulletin/.

    Jacobsen S D, Smyth J R, Spetzler H, Holl C M, Frost D J. 2004. Sound velocities and elastic constants of iron-bearing hydrous ringwoodite[J]. Phys Earth Planet Inter, 143/144: 47-56. doi: 10.1016/j.pepi.2003.07.019.

    Kawakatsu H, Yoshioka S. 2011. Metastable olivine wedge and deep dry cold slab beneath southwest Japan[J]. Earth Planet Sci Lett, 303(1/2): 1-10. doi: 10.1016/j.epsl.2011.01.008.

    Kennett B L N, Engdahl E R. 1991. Traveltimes for global earthquake location and phase identification[J]. Geophys J Int, 105(2): 429-465. doi: 10.1111/j.1365-246X.1991.tb06724.x.

    Li J, Wang X, Wang X J, Yuen D A. 2013. P and SH velocity structure in the upper mantle beneath Northeast China: Evidence for a stagnant slab in hydrous mantle transition zone[J]. Earth Planet Sci Lett, 367: 71-81. doi: 10.1016/j.epsl.2013.02.026.

    Li X Q, Sobolev S V, Kind R, Yuan X H, Estabrook C. 2000. A detailed receiver function image of the upper mantle discontinuities in the Japan subduction zone[J]. Earth Planet Sci Lett, 183(3/4): 527-541. doi: 10.1016/S0012-821X(00)00294-6.

    Li X Q, Yuan X H. 2003. Receiver functions in northeast China: Implications for slab penetration into the lower mantle in northwest Pacific subduction zone[J]. Earth Planet Sci Lett, 216(4): 679-691. doi: 10.1016/S0012-821X(03)00555-7.

    Niu F L, Levander A, Ham S, Obayashi M. 2005. Mapping the subducting Pacific slab beneath southwest Japan with Hi-net receiver functions[J]. Earth Planet Sci Lett, 239(1/2): 9-17. doi: 10.1016/j.epsl.2005.08.009.

    Obayashi M, Sugioka H, Yoshimitsu J, Fukao Y. 2006. High temperature anomalies oceanward of subducting slabs at the 410-km discontinuity[J]. Earth Planet Sci Lett, 243(1): 149-158. doi: 10.1016/j.epsl.2005.12.032.

    Obayashi M, Yoshimitsu J, Nolet G, Fukao Y, Shiobara H, Sugioka H, Miyamachi H, Gao Y. 2013. Finite frequency whole mantle P wave tomography: Improvement of subducted slab images[J]. Geophys Res Lett, 40(21): 2013GL057401. doi: 10.1002/2013gl057401.

    Ohtani E. 2005. Water in the mantle[J]. Elements, 1(1): 25-30. doi: 10.2113/gselements.1.1.25.

    Revenaugh J, Sipkin S A. 1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity[J]. Nature, 369(6480): 474-476. doi: 10.1038/369474a0.

    Ringwood A E. 1991. Phase transformations and their bearing on the constitution and dynamics of the mantle[J]. Geochim Cosmochim Acta, 55(8): 2083-2110. doi: 10.1016/0016-7037(91)90090-R.

    Ritsema J, Deuss A, van Heijst H J, Woodhouse J H. 2011. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements[J]. Geophys J Int, 184(3): 1223-1236. doi: 10.1111/j.1365-246X.2010.04884.x.

    Smyth J R, Holl C M, Frost D J, Jacobsen S D. 2004. High pressure crystal chemistry of hydrous ringwoodite and water in the Earth’s interior[J]. Phys Earth Planet Inter, 143/144: 271-278. doi: 10.1016/j.pepi.2003.08.011.

    Tajima F, Grand S P. 1995. Evidence of high velocity anomalies in the transition zone associated with southern Kurile subduction zone[J]. Geophys Res Lett, 22(23): 3139-3142. doi: 10.1029/95GL03314.

    Tang Y C, Obayashi M, Niu F L, Grand S P, Chen Y S, Kawakatsu H, Tanaka S, Ning J Y, Ni J F. 2014. Changbai-shan volcanism in northeast China linked to subduction-induced mantle upwelling[J]. Nat Geosci, 7(6): 470-475. doi: 10.1038/ngeo2166.

    Tonegawa T, Hirahara K, Shibutani T. 2005. Detailed structure of the upper mantle discontinuities around the Japan subduction zone imaged by receiver function analyses[J]. Earth Planets Space, 57(1): 5-14. doi: 10.1186/bf03351801.

    Wang B S, Niu F L. 2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China[J]. J Geophys Res, 115(B6): B06308. doi: 10.1029/2009JB006608.

    Wang R J. 1999. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bull Seismol Soc Am, 89(3): 733-741. http://cn.bing.com/academic/profile?id=2338095465&encoded=0&v=paper_preview&mkt=zh-cn

    Wang T, Chen L. 2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia[J]. Phys Earth Planet Inter, 172(3): 241-256. doi: 10.1016/j.pepi.2008.09.021.

    Wang Y, Wen L X, Weidner D, He Y M. 2006. SH velocity and compositional models near the 660-km discontinuity beneath South America and northeast Asia[J]. J Geophys Res, 111(B7): B07305. doi: 10.1029/2005JB003849.

    Wang Z. 2014. Joint inversion of P-wave velocity and vP/vS ratio: Imaging the deep structure in NE Japan[J]. Appl Geophys, 11(2): 119-127. doi: 10.1007/s11770-014-0437-1.

    Weidner D J, Wang Y B. 1998. Chemical- and Clapeyron-induced buoyancy at the 660 km discontinuity[J]. J Geophys Res, 103(B4): 7431-7441. doi: 10.1029/97jb03511.

    Xia S H, Zhao D P, Qiu X L. 2008. Tomographic evidence for the subducting oceanic crust and forearc mantle serpentinization under Kyushu, Japan[J]. Tectonophysics, 449(1/2/3/4): 85-96. doi: 10.1016/j.tecto.2007.12.007.

    Zhang R Q, Wu Q J, Li Y H, Romanowicz B. 2012. Lateral variations in SH velocity structure of the transition zone beneath Korea and adjacent regions[J]. J Geophys Res, 117(B9): B09315. doi: 10.1029/2011jb008900.

    Zhao D P, Maruyama S, Omori S. 2007. Mantle dynamics of western Pacific and East Asia: Insight from seismic tomography and mineral physics[J]. Gondw Res, 11(1/2): 120-131. doi: 10.1016/j.gr.2006.06.006.

图(6)  /  表(1)
计量
  • 文章访问数:  447
  • HTML全文浏览量:  281
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-10-27
  • 修回日期:  2016-02-17
  • 发布日期:  2016-08-31

目录

    /

    返回文章
    返回