地形效应影响下地震动参数与斜坡稳定性的相关性研究

刘甲美, 高孟潭, 陈鲲

刘甲美, 高孟潭, 陈鲲. 2015: 地形效应影响下地震动参数与斜坡稳定性的相关性研究. 地震学报, 37(5): 865-874. DOI: 10.11939/jass.2015.05.014
引用本文: 刘甲美, 高孟潭, 陈鲲. 2015: 地形效应影响下地震动参数与斜坡稳定性的相关性研究. 地震学报, 37(5): 865-874. DOI: 10.11939/jass.2015.05.014
Liu Jiamei, Gao Mengtan, Chen Kun. 2015: On the correlation of ground motion parameters with slope stability incorporating topographic effects. Acta Seismologica Sinica, 37(5): 865-874. DOI: 10.11939/jass.2015.05.014
Citation: Liu Jiamei, Gao Mengtan, Chen Kun. 2015: On the correlation of ground motion parameters with slope stability incorporating topographic effects. Acta Seismologica Sinica, 37(5): 865-874. DOI: 10.11939/jass.2015.05.014

地形效应影响下地震动参数与斜坡稳定性的相关性研究

基金项目: 

国家公益性地震行业专项 201408014

中央级公益性科研院所基本科研业务专项 DQJB13B03

详细信息
    通讯作者:

    高孟潭, e-mail: gaomt@vip.sina.com

  • 中图分类号: P315.9

On the correlation of ground motion parameters with slope stability incorporating topographic effects

  • 摘要: 地形对地震动的影响比较复杂, 考虑地形放大效应的地震滑坡稳定性分析需要选择合适的地震动参数. 本文使用自贡地形影响台阵记录到的2008年汶川MS8.0地震主震加速度记录, 分析了地震动峰值加速度、 阿里亚斯烈度以及90%能量持时随地形高度的变化, 探讨了地形效应作用下峰值加速度和阿里亚斯烈度与地震动作用下斜坡稳定性的相关性. 结果表明: ① 地形场地对峰值加速度和阿里亚斯烈度均有显著的放大效应. 地形放大效应较为复杂, 其整体上随台站高度的增加而增大, 水平向的放大效应大于竖直向. 水平向峰值加速度的放大系数为1.1—1.8, 阿里亚斯烈度的放大系数为1.2—3.3; 竖直向相应放大系数分别为1.1—1.3和1.2—1.7. ② 地形对地震动持时也有一定的放大效应, 但不同高度、 不同分量的放大效应没有显著差异, 其放大系数均约为1.3. ③ 阿里亚斯烈度和峰值加速度均能很好地表征地形对地震动的影响, 与地震动对斜坡稳定性的影响具有很强的相关性. 与峰值加速度相比, 阿里亚斯烈度综合了地震动的多方面特征, 可以更好地表征地形对地震动的影响, 与地震动作用下斜坡稳定性的相关性更强.
    Abstract: Topography has complex effects on ground motions. In assessing seismic landslide stability, the proper ground motion parameters are needed considering the topographic effects on slope stability. Based on the strong ground motion accelerations of the main shock of Wenchuan MS8.0 earthquake recorded by the Zigong topographic array, we analyzed the variation of peak ground acceleration (PGA), Arias intensity and 95% significant duration against the terrain’s height, and discussed the correlation betweem the stability of slope during an earthquake and PAG/Arias intensity, with the topographic effect being taken into consideration. The following results are concluded. ① The amplification effect of topography on PGA and Arias intensity are both obvious. The amplification effect becomes generally stronger with the height of the terrain increasing, and the amplification effect is more obvious on horizontal ground motions than on the vertical component. For the horizontal ground motions, the amplification factors are between 1.1 and 1.8 for PGAs and between 1.2 and 3.3 for Arias intensity; the amplification coefficient are in the range from 1.1 to 1.3 and 1.2 to 1.7 for the vertical PGAs and Arias intensity, respectively. The discrepant amplification effect on PAG and Arias intensity shows the influence of topographic effects on strong motion is quite complex. ② The topography can also amplify the duration of strong ground motions, but there is slight difference in the amplification effect among records from different heights and for different components, with the amplification factors all being about 1.3. ③ Both Arias intensity and PGA can reflect the effects of topography on ground motions, and have strong correlations with the stability of slope. Compared with PGA, Arias intensity contains more information of the ground motions, and has a better capacity to capture the effects of topography on ground motions and on the potential seismic landslides hazard.
  • 图  1   自贡地形影响台阵的台站位置剖面 示意图(引自王海云和谢礼立,2010)

    Figure  1.   Schematic illustration of the stations location of Zigong topography array (after Wang and Xie,2010)

    图  2   自贡地形影响台阵各台站峰值加速度PGA(a)及其放大系数K(b)随台站高度变化

    Figure  2.   Variation of PGA (a) and its amplification factor K (b) with height of the stations of Zigong topography array

    图  3   自贡地形影响台阵各台站阿里亚斯烈度IA(a)及其放大系数K(b)随台站高度的变化

    Figure  3.   Variation of Arias intensity IA (a) and its amplification factor K (b) with height of the stations of Zigong topography array

    图  4   各台站地震动持时Ds(a)及其放大系数K(b)随台站高度的变化

    Figure  4.   Variation of Dobry duration Ds (a) and its amplification factor K (b) with height of the stations of Zigong topography array

    图  5   自贡地形影响台阵各台站EW分量Newmark位移DN随峰值加速度 PGA(a)和阿里亚斯烈度IA(b)的变化

    Figure  5.   Variation of EW component Newmark displacement DN with PGA (a) and Arias intensity IA (b) for the stations of Zigong topography array

    图  6   自贡地形影响台阵各台站NS分量Newmark位移DN随峰值 加速度(a)和阿里亚斯烈度IA(b)的变化

    Figure  6.   Variation of NS component Newmark displacements DN with PGA (a) and Arias intensity IA (b) for the stations of Zigong topography array

    表  1   各台站地震动峰值加速度、 阿里亚斯烈度IA及90%地震动能量持时Ds一览表

    Table  1   Measured PGA,Arias intensity (IA),Dobry duration (Ds) for the seven stations

    台站 IA/(m·s-1)PGA/(m·s-2)Ds/s
    EWNSUDEWNSUDEWNSUD
    Z10.0460.0550.0220.225 0.265 0.147 90.4689.8991.46
    Z20.0680.0690.0280.274 0.304 0.157 120.85115.22121.50
    Z30.0900.0900.0340.333 0.323 0.176 121.09116.59122.36
    Z40.0810.0930.0300.274 0.323 0.157 122.46117.75128.78
    Z50.1110.1420.0360.333 0.421 0.157 120.88117.15122.03
    Z60.1500.1630.0390.412 0.421 0.196 120.62117.72123.71
    Z70.1190.1250.0290.304 0.451 0.147 120.30117.01121.16
    下载: 导出CSV

    表  2   各台站EW和NS分量的Newmark累积位移(DN)

    Table  2   Measured Newmark’s cumulative displacements DN of EW and NS components at the stations

    台站EW分量DN/cmNS分量DN/cm
    Z10.010.05
    Z20.030.16
    Z30.130.30
    Z40.070.32
    Z50.330.88
    Z60.711.07
    Z70.260.59
    下载: 导出CSV
  • 期刊类型引用(8)

    1. 唐涛,王运生,刘世成,冯卓,詹明斌. 基于希尔伯特-黄变换的地震加速度时频分析——以泸定M_S6.8级地震为例. 地球物理学进展. 2024(01): 1-9 . 百度学术
    2. 谢俊波,顾诗渤,许为龙. 基于M-LSTM与Resnet并联网络的同轴线缆开路故障定位方法. 机电工程技术. 2024(06): 221-226 . 百度学术
    3. 高文俊,李歆. 地震动脉冲分量表征模型研究综述. 地震工程与工程振动. 2024(03): 1-16 . 百度学术
    4. 禹海涛,朱晨阳,傅大宝,许乃星,卢哲超,蔡辉腾. 基于ST-CNN的脉冲型地震动与脉冲周期融合识别方法. 岩土工程学报. 2024(12): 2675-2683 . 百度学术
    5. 张尚荣,何佳蔓,唐响,熊洋. 近断层地震动加速度峰值比和脉冲特征的统计分析. 地震学报. 2024(06): 1051-1062 . 本站查看
    6. 赵晓芬,温增平. 近断层速度脉冲型地震动识别方法研究综述. 地球与行星物理论评(中英文). 2023(05): 532-540 . 百度学术
    7. 周德政,李晓杰,王宇新,王健,闫鸿浩,王小红. 爆炸冲击测试信号的滤波算法研究. 爆破. 2023(03): 191-198 . 百度学术
    8. 田兴丽,孙环阳,张红光,祁成. 城市轨道交通车辆制动系统的智能诊断与预警系统. 城市轨道交通研究. 2023(11): 94-98+103 . 百度学术

    其他类型引用(4)

图(6)  /  表(2)
计量
  • 文章访问数:  688
  • HTML全文浏览量:  279
  • PDF下载量:  30
  • 被引次数: 12
出版历程
  • 收稿日期:  2014-12-22
  • 修回日期:  2015-05-18
  • 发布日期:  2015-08-31

目录

    /

    返回文章
    返回