Distribution characteristics of soil mercury in Anninghe fault zone
-
摘要: 对安宁河断裂带地表破裂带土壤的总汞(THg)、总有机碳(TOC)和主量元素的含量进行了研究。结果表明,在小庙和紫马跨地表破裂带测线上,土壤THg与土壤气Hg含量的峰值位置较为一致,能够指示出断裂带释放Hg的通道位置。小庙、羊福山、野鸡洞和紫马跨地表破裂带土壤垂向剖面上THg与TOC的相关系数表明,TOC是影响土壤THg含量的重要因素。通过土壤THg与TOC,THg与化学蚀变指数(CIA)的相关系数以及THg含量的垂向分布模式,识别出安宁河断裂带土壤THg剖面的干扰来源、背景来源和断裂带脱气来源,为分析Hg的分布特征与构造活动之间的关系提供参考依据。Abstract: In this paper, the concentrations of total mercury, total organic carbon and major elements of soil in the surface rupture zone of Anninghe fault zone were analyzed. The results showed that the peak distribution of total mercury was consistent with that of soil gas mercury in Xiaomiao and Zimakua area, which may reveal the channel location of mercury released from the fault. The correlation coefficient between total mercury and total organic carbon in the soil vertical profiles of Xiaomiao, Yangfushan, Yejidong and Zimakua indicated that, total organic carbon was an important factor to control the distribution of total mercury concentration in the soil. The correlation coefficient among total mercury, total organic carbon and CIA index and vertical distribution of mercury concentration indicated that the sources of mercury in the soil profiles were affected by interference, background and the fault degassing. This study provides a reference for analyzing the relationship between distribution of mercury and tectonic activity.
-
Keywords:
- mercury /
- Anninghe fault zone /
- soil /
- TOC /
- weathering degree
-
-
图 5 土壤Hg含量垂向分布示意图(据胡振清,1991)
A为A层土壤,B为B层土壤,H为土层深度,h为干扰异常影响深度(a) 正常场地段;(b) 干扰异常地段;(c) 生根异常地段
Figure 5. The sketch map of vertical distribution of Hg concentration in soil (after Hu,1991)
A represents A layer of soil;B represents B layer of soil;H represents the soil depth;h represents the soil influence depth of disturbance. (a) Hg normal section;(b) Hg abnormal section due to surface disturbance;(c) Hg abnormal section with underground supply
表 1 安宁河断裂带小庙(XM)和紫马跨(ZMK)跨断层土壤样品数据
Table 1 Soil samples data of Xiaomiao (XM) and Zimakua (ZMK) across the Anninghe fault zone
样品编号 TFe2O3含量 MnO含量 样品编号 TFe2O3含量 MnO含量 XM-1 4.45% 0.09% ZMK-1 7.56% 0.15% XM-2 4.80% 0.09% ZMK-2 8.05% 0.18% XM-3 5.02% 0.08% ZMK-3 7.08% 0.09% XM-4 5.38% 0.08% ZMK-4 7.26% 0.18% XM-5 5.95% 0.10% ZMK-5 7.91% 0.12% XM-6 5.73% 0.09% ZMK-6 6.51% 0.09% XM-7 5.14% 0.07% ZMK-7 7.13% 0.09% XM-8 4.98% 0.06% ZMK-8 4.82% 0.09% XM-9 4.63% 0.07% ZMK-9 – – XM-10 4.35% 0.08% ZMK-10 – – XM-11 4.11% 0.08% 表 2 安宁河断裂带土壤剖面样品数据
Table 2 Data of soil profile samples in the Anninghe fault zone
位置 采样深度/cm Al2O3含量 CaO含量 K2O含量 Na2O含量 CIA 小庙 90 15.16% 0.52% 2.74% 1.12% 72.46 80 14.66% 0.49% 2.70% 1.09% 72.30 70 14.75% 0.49% 2.66% 1.10% 72.52 60 14.96% 0.46% 2.69% 1.05% 73.17 50 14.26% 0.49% 2.64% 1.09% 71.98 40 13.94% 0.50% 2.62% 1.12% 71.35 30 14.06% 0.55% 2.56% 1.18% 71.08 20 14.26% 0.61% 2.56% 1.24% 70.63 10 14.65% 0.69% 2.62% 1.31% 70.08 羊福山 90 11.46% 0.20% 2.92% 0.55% 72.09 80 11.30% 0.20% 2.80% 0.53% 72.55 70 10.94% 0.18% 2.72% 0.50% 72.73 60 10.40% 0.18% 2.71% 0.46% 72.10 50 10.04% 0.16% 2.73% 0.45% 71.54 40 9.35% 0.17% 2.67% 0.43% 70.49 30 9.17% 0.16% 3.11% 0.48% 67.30 20 9.24% 0.18% 3.15% 0.51% 66.84 10 9.37% 0.20% 2.91% 0.52% 68.16 野鸡洞 90 13.26% 1.00% 4.77% 2.73% 53.58 80 13.79% 1.20% 4.69% 2.34% 55.35 70 13.37% 1.11% 4.35% 1.98% 57.21 60 15.12% 1.37% 4.69% 2.34% 56.94 50 13.22% 1.32% 4.22% 1.92% 56.59 40 13.89% 1.28% 4.70% 2.17% 55.80 30 12.78% 1.21% 4.28% 1.96% 55.92 20 14.34% 1.42% 4.49% 2.31% 56.02 10 12.92% 1.32% 4.34% 2.18% 54.70 紫马跨 70 17.54% 2.42% 1.68% 1.81% 69.28 60 17.00% 2.45% 1.62% 1.78% 69.06 50 17.63% 2.18% 1.69% 1.68% 70.54 40 14.80% 2.22% 1.55% 1.76% 66.45 30 14.25% 2.55% 1.51% 1.87% 64.65 20 14.53% 2.48% 1.56% 1.97% 64.00 10 14.55% 2.34% 1.63% 1.98% 63.72 -
程建武,郭桂红,岳志军. 2010. 安宁河断裂带晚第四纪活动的基本特征及强震危险性分析[J]. 地震研究,33(3):265–272. doi: 10.3969/j.issn.1000-0666.2010.03.005 Cheng J W,Guo G H,Yue Z J. 2010. Basic characteristics and earthquake risk analysis of the Anning river fault zone in the west of Sichuan Province[J]. Journal of Seismological Research,33(3):265–272 (in Chinese).
冯连君,储雪蕾,张启锐,张同钢. 2003. 化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用[J]. 地学前缘,10(4):539–544. doi: 10.3321/j.issn:1005-2321.2003.04.019 Feng L J,Chu X L,Zhang Q R,Zhang T G. 2003. CIA (chemical index of alteration) and its applications in the Neoproterozoic clastic rocks[J]. Earth Science Frontiers,10(4):539–544 (in Chinese).
胡振清. 1991. 土壤热释汞测量与地震预测[G]//断层气测量在地震科学中的应用. 北京: 地震出版社: 209–216. Hu Z Q. 1991. Measurement of Heat-Released Mercury in Soil and Earthquake Prediction[G]//Applications of Measurement of Fracture Gases in Seismological Science. Beijing: Seismological Press: 209–216 (in Chinese).
贾俊平, 何晓群, 金勇进. 2018. 统计学[M]. 第7版. 北京: 中国人民大学出版社: 239–240. Jia J P, He X Q, Jin Y J. 2018. Statistics[M]. 7th ed. Beijing: China Renmin University Press: 239–240 (in Chinese).
金仰芬,伍宗华,黄宏库,申春生,魏家珍,朱宏任,阎立璋. 1987. 汞量测量监测预报地震的前景[J]. 地震,(5):6–14. Jin Y F,Wu Z H,Huang H K,Shen C S,Wei J Z,Zhu H R,Yan L Z. 1987. Promise of monitoring and predicting earthquakes by mercury survey[J]. Earthquake,(5):6–14 (in Chinese).
路鹏,袁一凡,袁洪克,刘学领,于晓辉,段玉石. 2012. 安宁河、则木河构造区近期强震危险性的概率估计[J]. 地震,32(4):62–72. doi: 10.3969/j.issn.1005-586X.2012.04.012 Lu P,Yuan Y F,Yuan H K,Liu X L,Yu X H,Duan Y S. 2012. Probabilistic estimate of strong earthquake risk in the Anninghe-Zemuhe tectonic zone[J]. Earthquake,32(4):62–72 (in Chinese).
裴锡瑜,王新民,张成贵. 1997. 晚第四纪安宁河活断裂分段的基本特征[J]. 四川地震,(4):52–61. Pei X Y,Wang X M,Zhang C G. 1997. Basic segmentation characteristics on Late Quaternary Anninghe active faults[J]. Earthquake Research in Sichuan,(4):52–61 (in Chinese).
冉勇康,程建武,宫会玲,陈立春. 2008. 安宁河断裂紫马跨一带晚第四纪地貌变形与断层位移速率[J]. 地震地质,30(1):86–98. doi: 10.3969/j.issn.0253-4967.2008.01.006 Ran Y K,Cheng J W,Gong H L,Chen L C. 2008. Late Quaternary geomorphic deformation and displacement rates of the Anninghe fault around Zimakua[J]. Seismology and Geology,30(1):86–98 (in Chinese).
汪春华. 2016. 2015年西昌市农村土壤中铅、镉、汞、砷、铬污染调查[J]. 中国农村卫生,(6):6. Wang C H. 2016. Xichang in 2015 rural soil lead,cadmium,mercury,arsenic,chromium pollution survey[J]. China’s Rural Health,(6):6 (in Chinese).
王喜龙,李营,杜建国,陈志,周晓成,李新艳,崔月菊,王海燕,张志宏. 2017. 首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J]. 地震学报,39(1):85–101. Wang X L,Li Y,Du J G,Chen Z,Zhou X C,Li X Y,Cui Y J,Wang H Y,Zhang Z H. 2017. Geochemical characteristics of soil gases Rn,Hg and CO2 and their genesis in the capital area of China[J]. Acta Seismologica Sinica,39(1):85–101 (in Chinese).
闻学泽. 2000. 四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征[J]. 地震地质,22(3):239–249. doi: 10.3969/j.issn.0253-4967.2000.03.005 Wen X Z. 2000. Character of rupture segmentation of the Xianshuihe-Anninghe-Zemuhe fault zone,western Sichuan[J]. Seismology and Geology,22(3):239–249 (in Chinese).
闻学泽,马胜利,雷兴林,西泽(桑原)保人,木口努,陈渠. 2007. 安宁河—则木河断裂带过渡段及其附近新发现的历史大地震破裂遗迹[J]. 地震地质,29(4):826–833. doi: 10.3969/j.issn.0253-4967.2007.04.013 Wen X Z,Ma S L,Lei X L,Nishizawa (Kuwahara) Y,Kiguchi T,Chen Q. 2007. Newly found surface rupture remains of large historical earthquakes on and near the transition segment of the Anninghe and Zemuhe fault zones,western Sichuan,China[J]. Seismology and Geology,29(4):826–833 (in Chinese).
闻学泽,范军,易桂喜,邓一唯,龙锋. 2008. 川西安宁河断裂上的地震空区[J]. 中国科学:D辑,38(7):797–807. Wen X Z,Fan J,Yi G X,Deng Y W,Long F. 2008. A seismic gap on the Anninghe fault in western Sichuan,China[J]. Science in China:Series D,51(10):1375–1387. doi: 10.1007/s11430-008-0114-4
周晓成,孙凤霞,陈志,吕超甲,李静,仵柯田,杜建国. 2017. 汶川MS8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J]. 岩石学报,33(1):291–303. Zhou X C,Sun F X,Chen Z,Lü C J,Li J,Wu K T,Du J G. 2017. Degassing of CO2,CH4,Rn and Hg in the rupture zones produced by Wenchuan MS8.0 earthquake[J]. Acta Petrologica Sinica,33(1):291–303 (in Chinese).
Bindler R,Yu R L,Hansson S,Claßen N,Karlsson J. 2012. Mining,metallurgy and the historical origin of mercury pollution in lakes and watercourses in central Sweden[J]. Environ Sci Technol,46(15):7984–7991. doi: 10.1021/es300789q
Dai Z H,Feng X B,Zhang C,Wang J F,Jiang T M,Xiao H J,Li Y,Wang X,Qiu G L. 2013. Assessing anthropogenic sources of mercury in soil in Wanshan Hg mining area,Guizhou,China[J]. Environ Sci Pollut Res,20(11):7560–7569. doi: 10.1007/s11356-013-1616-y
Deison R,Smol J P,Kokelj S V,Pisaric M F J,Kimpe L E,Poulain A J,Sanei H,Thienpont J R,Blais J M. 2012. Spatial and temporal assessment of mercury and organic matter in thermokarst affected lakes of the Mackenzie Delta Uplands,NT,Canada[J]. Environ Sci Technol,46(16):8748–8755. doi: 10.1021/es300798w
Li P,Feng X B,Qiu G L,Shang L H,Wang S F. 2012. Mercury pollution in Wuchuan mercury mining area,Guizhou,southwestern China:The impacts from large scale and artisanal mercury mining[J]. Environ Int,42:59–66. doi: 10.1016/j.envint.2011.04.008
McLennan S M. 1993. Weathering and global denudation[J]. J Geol,101(2):295–303. doi: 10.1086/648222
Nesbitt H W,Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites[J]. Nature,299(5885):715–717. doi: 10.1038/299715a0
Sun X L,Si X Y,Xiang Y,Liu D Y. 2017. Soil mercury spatial variations in the fault zone and corresponding influence factors[J]. Terr Atmos Ocean Sci,28(3):283–294. doi: 10.3319/TAO.2016.09.29.02
Varekamp J C,Buseck P R. 1984. Changing mercury anomalies in Long Valley,California:Indication for magma movement or seismic activity[J]. Geology,12(5):283–286. doi: 10.1130/0091-7613(1984)12<283:CMAILV>2.0.CO;2
Yan H Y,Feng X B,Shang L H,Qiu G L,Dai Q J,Wang S F,Hou Y M. 2008. The variations of mercury in sediment profiles from a historically mercury-contaminated reservoir,Guizhou Province,China[J]. Sci Total Environ,407(1):497–506. doi: 10.1016/j.scitotenv.2008.08.043
Yang D X,Zhang L,Liu Y W,Ren H W,Xie F R,Chen G C. 2015. Mercury indicating inflow zones and ruptures along the Wenchuan MS8.0 earthquake fault[J]. Chinese Journal of Geochemistry,34(2):201–207. doi: 10.1007/s11631-014-0028-0
Zhang L,Liu Y W,Guo L S,Yang D X,Fang Z,Chen T,Ren H W,Yu B. 2014. Isotope geochemistry of mercury and its relation to earthquake in the Wenchuan Earthquake Fault Scientific Drilling Project Hole-1 (WFSD-1)[J]. Tectonophysics,619/620:79–85. doi: 10.1016/j.tecto.2013.08.025
Zhou X C,Du J G,Chen Z,Cheng J W,Tang Y,Yang L M,Xie C,Cui Y J,Liu L,Yi L,Yang P X,Li Y. 2010. Geoche-mistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake,southwestern China[J]. Geochem Trans,11:5. doi: 10.1186/1467-4866-11-5
-
期刊类型引用(39)
1. 陈锡晶,刘泽民,陈昊,张波,陈德兴,鲁思凡. 安徽及邻区2013—2022年波速比变化. 华北地震科学. 2024(04): 96-101 . 百度学术
2. 陈丽娟,龚丽文,董娣,王同军,陈继锋. 利用纵、横波震源谱参数研究波速比——以岷县—漳县M_S6.6地震为例. 地震工程学报. 2022(01): 158-165+209 . 百度学术
3. 赵瑞,郑建常,崔华伟,张正帅. 2017~2018年山东长岛震群双差波速比特征分析. 大地测量与地球动力学. 2022(11): 1149-1155 . 百度学术
4. 许康生,李英. 汶川M_S8.0地震前的地面运动排列熵变化. 大地测量与地球动力学. 2019(06): 573-576 . 百度学术
5. 王亚茹,宋昭,刘晓丹,郭蕾,王妍,王时,宫猛,王想. 唐山地区波速比变化特征研究. 大地测量与地球动力学. 2019(07): 686-690 . 百度学术
6. 宋春燕,邵学钟,马瑾. 汶川M_S8.0地震前后远震PS转换波与P波到时差的变化特征. 地震地质. 2019(03): 726-742 . 百度学术
7. 李婷婷,刘利,胡光武,陈飞. 江苏地区波速比与泊松比分布特征. 地震. 2019(03): 149-157 . 百度学术
8. 刘春,邱玉荣,王莹,呼楠. 2013年甘肃岷县漳县6.6级地震前后波速比变化特征分析. 高原地震. 2019(S1): 1-4 . 百度学术
9. 唐明帅,王海涛,魏芸芸,李艳永,王琼,魏斌,苏金波. 接收函数分析中强地震前后地壳泊松比变化在新疆地区的初步应用. 中国地震. 2019(03): 476-487 . 百度学术
10. 唐明帅,王海涛,魏芸芸,李艳永,葛粲,王琼,苏金波,魏斌. 2012年新源-和静M_S6.6地震前后地壳介质泊松比变化. 地震地质. 2019(05): 1123-1135 . 百度学术
11. 张慧,李志雄,李盛. 海南岛及近海波速比特征初步研究. 地震工程学报. 2018(03): 524-534 . 百度学术
12. 陶媛,王飞,陆栋梁,葛计划,隆爱军. 金寨震群波速比变化特征分析. 科技资讯. 2018(10): 70-73 . 百度学术
13. 贾漯昭,王志铄,张亚琳,邢康. 用双差波速比方法分析2014—2015年安徽金寨震群. 地震. 2017(01): 112-120 . 百度学术
14. Zhang Linlin,Gao Chaojun. Analysis of the Wave Velocity Ratio Anomalies in the Tianshan Region of Xinjiang. Earthquake Research in China. 2017(01): 39-50 . 必应学术
15. 刘明辉,彭朝勇,周银兴,陈阳,李江,王洪体. 芦山震中区上地壳剖面二维波速结构模型反演. 地球物理学进展. 2016(01): 69-78 . 百度学术
16. 刘文邦. 青海东北部地区地震直达波波速比及视速度测定与研究. 地震地磁观测与研究. 2016(02): 21-25 . 百度学术
17. 刘文邦,万玉杰,李玮杰. 2016年青海门源6.4级地震前后波速比变化研究. 地震研究. 2016(S1): 49-54+133 . 百度学术
18. 杨贵,徐嘉隽,许振栋,曹轶. 福建仙游震群波速比变化初步分析. 华南地震. 2016(03): 88-97 . 百度学术
19. Wang Peng,Zheng Jianchang,Wang Yan. Research of Source Parameters of the Yutian M_S7. 3 Earthquake in Xinjiang on February 12, 2014. Earthquake Research in China. 2016(01): 33-42 . 必应学术
20. 张琳琳,高朝军. 新疆天山地区的波速比异常分析. 中国地震. 2016(01): 118-126 . 百度学术
21. 王亚茹,王想,宫猛,郭蕾,刘晓丹. 河北及邻区平均波速比变化特征分析. 中国地震. 2016(04): 747-755 . 百度学术
22. 张杰,李宏男,王立长. 大跨非对称空间结构多维地震动反应研究. 地震工程与工程振动. 2015(03): 8-16 . 百度学术
23. 张洪艳,张广伟,王晓山,张晨侠,康建红. 吉林地区波速比分布特征及构造意义. 地震地质. 2015(03): 829-839 . 百度学术
24. 刘文邦,黄浩,王培玲. 玉树地区波速比和视速度变化特征研究. 高原地震. 2015(S1): 53-57 . 百度学术
25. 李冬圣,蔡玲玲,常亮,王莉蝉,张从珍. 河北赞皇震群波速比变化特征研究. 华北地震科学. 2015(04): 20-23 . 百度学术
26. Weng Zhaoqiang,Liang Xiangjun,Wu Haoyu,Liu Linfei,Li Li. Study on V_P/ V_S Variation Behavior in the Shanxi Region by the Wadati Single Station and Multi-earthquake Method. Earthquake Research in China. 2015(04): 514-526 . 必应学术
27. 翁钊强,梁向军,吴昊昱,刘林飞,李丽. 单台多震和达法研究山西地区的波速比变化特征. 中国地震. 2015(01): 89-100 . 百度学术
28. 王鹏,郑建常. 2014年2月12日新疆于田7.3级地震的震源参数. 中国地震. 2015(02): 262-270 . 百度学术
29. 隗永刚,陈学忠,郭祥云,蔡一川,王恒信. 芦山7.0级地震前单台波速异常变化研究. 地震. 2014(02): 105-114 . 百度学术
30. 李艳娥,王林瑛,郑需要. 汶川地震前后波速比变化特征的再研究. 地震学报. 2014(03): 425-432+531 . 本站查看
31. 刘文邦,王培玲,马玉虎. 青海东北部地区多台波速比研究. 地震研究. 2014(S1): 45-49 . 百度学术
32. 吴密,刘泽民,章兵,王群,徐强,谢瑞杰. 华东三分区波速比时空特征分析与研究. 地震工程学报. 2014(04): 1033-1038 . 百度学术
33. 杨贵,许振栋. 福建仙游M_L4.1地震序列波速比变化. 地震地磁观测与研究. 2013(Z1): 20-24 . 百度学术
34. 王培玲,姚家骏,刘文邦,陈玉华. 青海玉树地区中强震震源参数特征研究. 高原地震. 2013(02): 1-7 . 百度学术
35. 蔡杏辉. 福建地区平均波速比的测定及初步分析. 高原地震. 2013(04): 31-34 . 百度学术
36. 刘旭宙,张元生,秦满忠. 岷县M_S6.6地震震源机制及构造应力研究. 地震工程学报. 2013(03): 432-437 . 百度学术
37. 张博,冯建刚,张辉,姜佳佳. 甘肃岷县漳县M_S6.6地震序列波速比变化特征研究. 地震工程学报. 2013(03): 557-561 . 百度学术
38. 姚家骏,王培玲,刘文邦. 玉树7.1级地震前后波速比变化特征分析. 高原地震. 2012(03): 6-10 . 百度学术
39. 杨贵,李祖宁,徐嘉隽. 应用和达法测定福建古田水口水库M_L4.8级地震序列波速比. 华北地震科学. 2012(03): 54-57 . 百度学术
其他类型引用(9)