Wei Yonggang, Yang Qianli, Wang Tingting, Jiang Changsheng, Bian Yinju. 2019: Earthquake and explosion identification based on Deep Learning residual network model. Acta Seismologica Sinica, 41(5): 646-657. DOI: 10.11939/jass.20190030
Citation: Wei Yonggang, Yang Qianli, Wang Tingting, Jiang Changsheng, Bian Yinju. 2019: Earthquake and explosion identification based on Deep Learning residual network model. Acta Seismologica Sinica, 41(5): 646-657. DOI: 10.11939/jass.20190030

Earthquake and explosion identification based on Deep Learning residual network model

More Information
  • Received Date: February 13, 2019
  • Revised Date: April 01, 2019
  • Available Online: September 26, 2019
  • Published Date: August 31, 2019
  • In order to enhance the property identification of earthquakes and explosions recorded by seismic network, this paper proposed a new technology of explosion discrimination based on the residual network model in Deep Learning technology, and utilized it to identifying explosion and surrounding earthquakes in Sanhe Quarry of Hebei Province. According to the waveform data recorded by the Beijing Digital Telemetry Seismic Network and China Center of Digital Seismic Network, and the released seismic phase reports, we analyzed the waveform power spectrum of 93 explosion events and 54 surrounding seismic events in Sanhe Quarry of Hebei Province. Moreover, 100 independent random sampling sub-tests, 1 000 independent random sampling sub-tests and leave-one-out-cross-validation test were conducted by adopting different training sample proportions, respectively. The test results show that the residual network model in Deep Learning has a high recognition rate and a stable effect in identifying the property of earthquakes and explosions, therefore it has a wonderfully potential application.
  • 郝春月,郑重,张爽. 2012. 玉树地震前后当地的噪声变化研究[J]. 地球物理学进展,27(6):2418–2428. doi: 10.6038/j.issn.1004-2903.2012.06.016
    Hao C Y,Zheng Z,Zhang S. 2012. Research about noise variation around YUS station before and after the Yushu earthquake[J]. Progress in Geophysics,27(6):2418–2428 (in Chinese).
    刘晗,张建中. 2014. 微震信号自动检测的STA/LTA算法及其改进分析[J]. 地球物理学进展,29(4):1708–1714. doi: 10.6038/pg20140429
    Liu H,Zhang J Z. 2014. STA/LTA algorithm analysis and improvement of microseismic signal automatic detection[J]. Progress in Geophysics,29(4):1708–1714 (in Chinese).
    山世光,阚美娜,刘昕,刘梦怡,邬书哲. 2016. 深度学习:多层神经网络的复兴与变革[J]. 科技导报,34(14):60–70.
    Shan S G,Kan M N,Liu X,Liu M Y,Wu S Z. 2016. Deep Learning:The revival and transformation of multi layer neural networks[J]. Science&Technology Review,34(14):60–70 (in Chinese).
    孙志军,薛磊,许阳明,王正. 2012. 深度学习研究综述[J]. 计算机应用研究,29(8):2806–2810. doi: 10.3969/j.issn.1001-3695.2012.08.002
    Sun Z J,Xue L,Xu Y M,Wang Z. 2012. Overview of Deep Learning[J]. Application Research of Computers,29(8):2806–2810 (in Chinese).
    王婷婷,边银菊,张博. 2013. 地震和爆破的综合识别方法研究[J]. 地球物理学进展,28(5):2433–2443. doi: 10.6038/pg20130522
    Wang T T,Bian Y J,Zhang B. 2013. The comprehensive identification methods between earthquakes and explosions[J]. Progress in Geophysics,28(5):2433–2443 (in Chinese).
    杨宏,贾维敏. 2000. 基于神经网络的综合评判在核爆模式识别中的应用[J]. 核电子学与探测技术,20(4):279–283. doi: 10.3969/j.issn.0258-0934.2000.04.009
    Yang H,Jia W M. 2000. Recognition of underground nuclear explosion and natural earthquake based on neural network[J]. Nuclear Electronics&Detection Technology,20(4):279–283 (in Chinese).
    AitLaasri E H,Akhouayri E S,Agliz D,Atmani A. 2013. Seismic signal classification using multi-layer perceptron neural network[J]. Int J Comput Appl,79(15):35–43.
    Baer M,Kradolfer U. 1987. An automatic phase picker for local and teleseismic events[J]. Bull Seismol Soc Am,77(4):1437–1445.
    Bengio Y,Simard P,Frasconi P. 2002. Learning long-term dependencies with gradient descent is difficult[J]. IEEE Trans Neural Netw,5(2):157–166.
    Bennett T J,Murphy J R. 1986. Analysis of seismic discrimination capabilities using regional data from western United States events[J]. Bull Seismol Soc Am,76(4):1069–1086.
    Dahl G E, Yu D, Deng L, Acero A. 2011. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS[C]//IEEE International Conference on Acoustics Speech and Signal Processing. Prague: IEEE: 4688−4691.
    Esposito A M,Giudicepietro F,Scarpetta S,D’Auria L,Marinaro M,Martini,M. 2006. Automatic discrimination among landslide,explosion-quake,and microtremor seismic signals at Stromboli Volcano using neural networks[J]. Bull Seismol Soc Am,96(4A):1230–1240. doi: 10.1785/0120050097
    Falsaperla S,Graziani S,Nunnari G,Spampinato S. 1996. Automatic classification of volcanic earthquakes by using multi-layered neural networks[J]. Nat Hazards,13(3):205–228.
    He K M, Zhang X Y, Ren S Q, Sun J. 2016. Deep residual learning for image recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE: 770−778.
    Hong T K. 2013. Seismic discrimination of the 2009 North Korean nuclear explosion based on regional source spectra[J]. J Seismol,17(2):753–769. doi: 10.1007/s10950-012-9352-1
    Kingma D P, Ba J. 2015. Adam: A method for stochastic optimization[C]//Proceedings of the 3rd International Conference for Learning Representations. San Diego: The Institute for Catastrophic Loss Redu Ction.
    Kohavi R. 1995. A study of cross-validation and bootstrap for accuracy estimation and model selection[C]//Proceedings of the 14th International Joint Conference on Artificial Intelligence. Montreal: Morgan Kaufmann Publishers Inc, 14: 1137−1143.
    Kortström J,Uski M,Tiira T. 2016. Automatic classification of seismic events within a regional seismograph network[J]. Comput Geosci,87:22–30. doi: 10.1016/j.cageo.2015.11.006
    Krizhevsky A, Sutskever I, Hinton G E. 2012. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc, 1097−1105.
    Kuyuk H S,Yildirim E,Dogan E,Horasan G. 2011. An unsupervised learning algorithm:Application to the discrimination of seismic events and quarry blasts in the vicinity of Istanbul[J]. Nat Hazards Earth Syst Sci,11(1):93–100. doi: 10.5194/nhess-11-93-2011
    Lee H, Largman Y, Pham P, Ng A Y. 2009. Unsupervised feature learning for audio classification using convolutional deep belief networks[C]//Proceedings of the 22nd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc: 1096−1104.
    Rabin N,Bregman Y,Lindenbaum O,Ben-Horin Y,Averbuch A. 2016. Earthquake-explosion discrimination using diffusion maps[J]. Geophys J Int,207(3):1484–1492. doi: 10.1093/gji/ggw348
    Ren S Q,He K M,Girshick R,Sun J. 2015. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell,39(6):1137–1149.
    Reynen A,Audet P. 2017. Supervised machine learning on a network scale:Application to seismic event classification and detection[J]. Geophys J Int,210(3):1394–1409. doi: 10.1093/gji/ggx238
    Riggelsen C,Ohrnberger M. 2014. A machine learning approach for improving the detection capabilities at 3C seismic stations[J]. Pure Appl Geophys,171(3/4/5):395–411. doi: 10.1007/s00024-012-0592-3
    Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference for Learning Representations. San Diego: The Institute for Catastrophic Loss Redu Ction.
    Stevenson P R. 1976. Microearthquakes at Flathead Lake,Montana:A study using automatic earthquake processing[J]. Bull Seismol Soc Am,66(1):61–80.
    Stump B W,Hedlin M A H,Pearson D C,Hsu V. 2002. Characterization of mining explosions at regional distances[J]. Rev Geophys,40(4):2–1.
    Szegedy C, Liu W, Jia Y Q, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. 2015. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE: 1−9.
    Tiira T. 1995. Discrimination of nuclear explosions and earthquakes from teleseismic distances with a local network of short period seismic stations using artificial neural networks[J]. Phys Earth Planet Inter,97(1/2/3/4):247–268.
    Vallejos J A,McKinnon S D. 2013. Logistic regression and neural network classification of seismic records[J]. Int J Rock Mech Min Sci,62:86–95. doi: 10.1016/j.ijrmms.2013.04.005
    Wiemer S. 2000. Mapping and removing quarry blast events from seismicity catalogs[J]. Bull Seismol Soc Am,90(2):525–530. doi: 10.1785/0119990104
  • Cited by

    Periodical cited type(25)

    1. 彭登靖,王泽兰,马敏伟,马达. 昭通巡龙强夯土非天然地震记录特征及识别研究. 地震科学进展. 2024(03): 187-192 .
    2. 贾漯昭,孟令媛,闫睿. 深度学习在地震监测预报中的应用进展. 地震研究. 2024(03): 336-349 .
    3. 王婷婷,边银菊,任梦依,杨千里,侯晓琳. 地震事件分类识别软件. 地震. 2024(02): 104-119 .
    4. 彭登靖. 基于卷积神经网络的天然地震和非天然地震识别. 高原地震. 2024(02): 36-40 .
    5. 沈婕,朱景宝,缪发军,宋晋东,李山有. 基于残差神经网络的天然地震与非天然地震信号分类. 地震工程与工程振动. 2024(05): 13-25 .
    6. 曾晓燕,邱强,蒋策,周少辉,梁明,熊成. 基于卷积神经网络的地震与爆破识别模型及其在广东地区的初步应用. 地震学报. 2024(06): 1002-1013 . 本站查看
    7. 谭笑枫,李夕海,牛超,曾小牛,李鸿儒,刘天佑. 基于MVIDA算法和MS-SE-Res Net的次声事件分类方法(英文). Applied Geophysics. 2024(04): 667-679+878-879 .
    8. 张帆,杨晓忠,王树波. 基于LSTM神经网络的地震事件分类. 计算机应用与软件. 2023(04): 75-79 .
    9. 章宇成,华卫. 白鹤滩水库库区基于深度学习的震相拾取与地震定位. 地震. 2023(01): 137-151 .
    10. 王泽兰. 昭通巡龙测震台强夯土事件与微震波形特征分析. 高原地震. 2023(03): 16-20+34 .
    11. 邵永谦,王国成,彭钊,于海英,王鹏,王成睿. 基于标准时频变换的上海地区地震与爆破识别. 华北地震科学. 2022(02): 48-55 .
    12. 田宵,汪明军,张雄,王向腾,盛书中,吕坚. 基于多输入卷积神经网络的天然地震和爆破事件识别. 地球物理学报. 2022(05): 1802-1812 .
    13. 郑杰,文畅,谢凯,盛冠群. 参数优选残差网络下的井震联合反演方法. 电子测量技术. 2022(12): 168-174 .
    14. 吴涛,庞聪,江勇,丁炜,廖成旺. 基于随机子空间和Ada Boost集成学习的地震事件性质辨识研究. 地球物理学进展. 2022(03): 981-988 .
    15. 刘涛,戴志军,陈苏,傅磊. 基于深度学习的地震震级分类. 地震学报. 2022(04): 656-664 . 本站查看
    16. 孟娟,张家声,李亚南. 基于改进EWT和LogitBoost集成分类器的地震事件分类识别算法. 地震工程学报. 2022(05): 1233-1242 .
    17. 隗永刚,蒋长胜. 人工智能技术在地震减灾应用中的研究进展. 地球物理学进展. 2021(02): 516-524 .
    18. 程先琼,蒋科植. 基于深度降噪自编码神经网络的中国大陆地壳厚度反演. 地震学报. 2021(01): 34-47+136 . 本站查看
    19. 谭笑枫,李夕海,刘继昊,李广帅,于晓彤. 基于一维卷积神经网络的化爆和地震次声分类. 应用声学. 2021(03): 457-467 .
    20. 周少辉,蒋海昆,曲均浩,李健,郭宗斌,郑旭. 爆破、塌陷识别研究进展综述. 中国地震. 2021(02): 508-522 .
    21. 唐婷婷,余思,陈江贻. 天然地震与人工爆破特征识别研究综述. 地震科学进展. 2021(09): 385-394 .
    22. 张帆,杨晓忠,吴立飞,韩晓明,王树波. 基于短时傅里叶变换和卷积神经网络的地震事件分类. 地震学报. 2021(04): 463-473+533 . 本站查看
    23. Ce Jiang,Lihua Fang,Liping Fan,Boren Li. Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes. Earthquake Science. 2021(05): 425-435 .
    24. 高家乙,刘晓锋,闫睿. 河南平顶山平煤矿区天然地震、爆破、塌陷时频特征分析. 地震地磁观测与研究. 2020(03): 67-74 .
    25. 杨千里,王婷婷,边银菊. 基于广义S变换的地震与爆炸识别. 地震学报. 2020(05): 613-628+508 . 本站查看

    Other cited types(12)

Catalog

    Article views (1662) PDF downloads (203) Cited by(37)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return