Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Display Method:
, Available online ,
doi: 10.11939/jass.20220034
Abstract:
, Available online ,
doi: 10.11939/jass.20210172
Abstract:
, Available online ,
doi: 10.11939/jass.20210189
Abstract:
, Available online ,
doi: 10.11939/jass.20210165
Abstract:
, Available online ,
doi: 10.11939/jass.20210197
Abstract:
, Available online ,
doi: 10.11939/jass.20210176
Abstract:
, Available online ,
doi: 10.11939/jass.20220190
Abstract:
, Available online ,
doi: 10.11939/jass.20220003
Abstract:
, Available online ,
doi: 10.11939/jass.20220051
Abstract:
, Available online ,
doi: 10.11939/jass.20210196
Abstract:
, Available online ,
doi: 10.11939/jass.20220212
Abstract:
, Available online ,
doi: 10.11939/jass.20220163
Abstract:
, Available online ,
doi: 10.11939/jass.20220091
Abstract:
, Available online ,
doi: 10.11939/jass.20220191
Abstract:
, Available online ,
doi: 10.11939/jass.20210192
Abstract:
, Available online ,
doi: 10.11939/jass.20220175
Abstract:
, Available online ,
doi: 10.11939/jass.20210147
Abstract:
, Available online ,
doi: 10.11939/jass.20220215
Abstract:
, Available online ,
doi: 10.11939/jass.20220032
Abstract:
, Available online ,
doi: 10.11939/jass.20220148
Abstract:
, Available online ,
doi: 10.11939/jass.20220053
Abstract:
, Available online ,
doi: 10.11939/jass.20210194
Abstract:
Column
Display Method:
2023, 45(1): 1-16.
doi: 10.11939/jass.20210179
Abstract:
Crustal thickness and vP/vS ratio are two important parameters for understanding crustal structure and composition, which can help to study regional tectonics. Receiver function analysis has been widely used for determining crustal thickness and vP/vS ratio by the H-κ method or the H-κ-c method. However, it can only acquire average crustal thickness and vP/vS ratio beneath each seismic station, but cannot constrain their lateral variations among seisimic stations due to their sparse and irregular distribution. On the other hand, the gravity data has been widely used to derive the Moho variaitons, which has a good coverage and resolution laterally but poor resolution vertically. Therefore, in this study we have developed a new joint inversion method of receiver functions and gravity data to simultaneously invert for variations of Moho depths and average crustal vP/vS ratios in a region. The method takes advantage of complementary strengths of receiver functions and gravity data, and can simultaneously fit all receiver functions and gravity data in the region. The synthetic tests show that the proposed joint inversion method produces more reliable results than only receiver function analysis, especially for the crustal thickness.
Crustal thickness and vP/vS ratio are two important parameters for understanding crustal structure and composition, which can help to study regional tectonics. Receiver function analysis has been widely used for determining crustal thickness and vP/vS ratio by the H-κ method or the H-κ-c method. However, it can only acquire average crustal thickness and vP/vS ratio beneath each seismic station, but cannot constrain their lateral variations among seisimic stations due to their sparse and irregular distribution. On the other hand, the gravity data has been widely used to derive the Moho variaitons, which has a good coverage and resolution laterally but poor resolution vertically. Therefore, in this study we have developed a new joint inversion method of receiver functions and gravity data to simultaneously invert for variations of Moho depths and average crustal vP/vS ratios in a region. The method takes advantage of complementary strengths of receiver functions and gravity data, and can simultaneously fit all receiver functions and gravity data in the region. The synthetic tests show that the proposed joint inversion method produces more reliable results than only receiver function analysis, especially for the crustal thickness.
2023, 45(1): 17-28.
doi: 10.11939/jass.20210157
Abstract:
Based on the waveform data of IRIS teleseismic station, this paper inversed the focal rupture process of Yunnan Yangbi MS6.4 earthquake, calculated the dynamic Coulomb rupture stress change caused by fault rupture in near field and discussed the dynamic stress triggering effect of main shock on near-field aftershock activity. The results show that the evolution process of dynamic Coulomb stress is consistent with the inversion results of source fracture characteristics, and its size distribution is also well correlated with the density of seismic sequence distribution. The static and dynamic Coulomb rupture stress produced by the main shock promote the occurrence of aftershocks, but compared with the static stress, the proportion of aftershocks located in the positive Coulomb rupture stress area is increased by 21%, and the positive and negative areas of aftershocks and dynamic Coulomb stress change have better consistency. The dynamic stress can better explain the spatial characteristics of aftershocks distribution after the earthquake. Small earthquakes cluster at 10 km perpendicular to the main trunk of the earthquake sequence, which may be caused by the dominant dynamic Coulomb fracture stress produced by the main earthquake. Quantitative analysis of the dynamic stress triggering of the main shock to the aftershock shows that within one week after the main shock, eight aftershocks receiving points bigger than MS4.0 are triggered by the dynamic Coulomb rupture stress.
Based on the waveform data of IRIS teleseismic station, this paper inversed the focal rupture process of Yunnan Yangbi MS6.4 earthquake, calculated the dynamic Coulomb rupture stress change caused by fault rupture in near field and discussed the dynamic stress triggering effect of main shock on near-field aftershock activity. The results show that the evolution process of dynamic Coulomb stress is consistent with the inversion results of source fracture characteristics, and its size distribution is also well correlated with the density of seismic sequence distribution. The static and dynamic Coulomb rupture stress produced by the main shock promote the occurrence of aftershocks, but compared with the static stress, the proportion of aftershocks located in the positive Coulomb rupture stress area is increased by 21%, and the positive and negative areas of aftershocks and dynamic Coulomb stress change have better consistency. The dynamic stress can better explain the spatial characteristics of aftershocks distribution after the earthquake. Small earthquakes cluster at 10 km perpendicular to the main trunk of the earthquake sequence, which may be caused by the dominant dynamic Coulomb fracture stress produced by the main earthquake. Quantitative analysis of the dynamic stress triggering of the main shock to the aftershock shows that within one week after the main shock, eight aftershocks receiving points bigger than MS4.0 are triggered by the dynamic Coulomb rupture stress.
2023, 45(1): 29-45.
doi: 10.11939/jass.20210149
Abstract:
In order to promote understanding mechanisms of co-seismic response of water level in well shaking table experiments have been carried out with sinusoidal loading in different vibration frequencies and amplitudes (accelerations) for complete well unconsolidated confined aquifer system. The physical model has been built based on experimental model, and fluid-solid coupled model of pore pressure response in unconsolidated aquifer and mathematical model of flow interaction between aquifer well under vibrations have been established. The experimental processes have been simulated in COMSOL Multiphysics, a multi-field coupling simulation software. Four typical water level variation forms observed in experiment are similar to those of field studies, and the results of numerical simulation show that the mathematical model established in this study can well reflect the response of pore water pressure and water level in unconfined aquifer. This research is of great significance to explain the mechanism of co-seismic responses of groundwater, and stability and safety of seepage in rock and soil mass.
In order to promote understanding mechanisms of co-seismic response of water level in well shaking table experiments have been carried out with sinusoidal loading in different vibration frequencies and amplitudes (accelerations) for complete well unconsolidated confined aquifer system. The physical model has been built based on experimental model, and fluid-solid coupled model of pore pressure response in unconsolidated aquifer and mathematical model of flow interaction between aquifer well under vibrations have been established. The experimental processes have been simulated in COMSOL Multiphysics, a multi-field coupling simulation software. Four typical water level variation forms observed in experiment are similar to those of field studies, and the results of numerical simulation show that the mathematical model established in this study can well reflect the response of pore water pressure and water level in unconfined aquifer. This research is of great significance to explain the mechanism of co-seismic responses of groundwater, and stability and safety of seepage in rock and soil mass.
2023, 45(1): 46-61.
doi: 10.11939/jass.20220074
Abstract:
Based on the finite element method of unstructured grid, the efficient forward modeling of the borehole-to-surface electrical method derived by the linear current source under the condition of the 3D complex geoelectric model was carried out. The effects on the effectiveness and accuracy of the borehole-to-surface electrical method imaging were discussed by obtaining the electric field response derivative to characterize the boundary range of the target body, and using the difference field topography correction technology to eliminate the topographic influence. And the comparison between the numerical solution and the analytical solution verifies the effectiveness of the algorithm in this paper. The model calculation results show that the spatial position and direction of the roadway with water accumulation cause significant changes in the apparent resistivity, and the extreme value of the apparent resistivity change rate accurately and clearly indicates the boundary position of the roadway. The normalized total horizontal derivative of the electric potential greatly improves the ability of the borehole-to-surface electrical method to identify the complex boundary position of the target body. Moreover, the influence of topography on the distribution of borehole-to-surface electrical field is also serious, and its apparent resistivity response is approximately symmetrical to the shape of the topography. The difference field technique can effectively weaken the influence of topography on the high-precision imaging of the borehole-to-surface electrical method. The research results have important theoretical and practical significance for improving the data interpretation level and application effect of the borehole-to-surface electrical method.
Based on the finite element method of unstructured grid, the efficient forward modeling of the borehole-to-surface electrical method derived by the linear current source under the condition of the 3D complex geoelectric model was carried out. The effects on the effectiveness and accuracy of the borehole-to-surface electrical method imaging were discussed by obtaining the electric field response derivative to characterize the boundary range of the target body, and using the difference field topography correction technology to eliminate the topographic influence. And the comparison between the numerical solution and the analytical solution verifies the effectiveness of the algorithm in this paper. The model calculation results show that the spatial position and direction of the roadway with water accumulation cause significant changes in the apparent resistivity, and the extreme value of the apparent resistivity change rate accurately and clearly indicates the boundary position of the roadway. The normalized total horizontal derivative of the electric potential greatly improves the ability of the borehole-to-surface electrical method to identify the complex boundary position of the target body. Moreover, the influence of topography on the distribution of borehole-to-surface electrical field is also serious, and its apparent resistivity response is approximately symmetrical to the shape of the topography. The difference field technique can effectively weaken the influence of topography on the high-precision imaging of the borehole-to-surface electrical method. The research results have important theoretical and practical significance for improving the data interpretation level and application effect of the borehole-to-surface electrical method.
2023, 45(1): 62-75.
doi: 10.11939/jass.20210127
Abstract:
Using the geoelectric field data recorded by four geoelectric stations in Ningxia, the variation characteristics, spectral characteristics, the relationship with regional pressure variation, and the relationship between the measuring direction and the strike of nearby faults are studied. The research results show that part of the geoelectric field has diurnal variation characteristics, and also has the characteristics of non-periodic variation of atmospheric pressure, which is negatively correlated with the variation of atmospheric pressure, and the correlation is related to the angle between the measuring direction and the strike of nearby faults. It is considered that the geoelectric field has the characteristics of non-periodic change of atmospheric pressure is caused by the fluid “channeling” resulting from the change of air pressure system in the seepage process, which is due to the permeability difference between the bedrock pores and the nearby fault fractures.
Using the geoelectric field data recorded by four geoelectric stations in Ningxia, the variation characteristics, spectral characteristics, the relationship with regional pressure variation, and the relationship between the measuring direction and the strike of nearby faults are studied. The research results show that part of the geoelectric field has diurnal variation characteristics, and also has the characteristics of non-periodic variation of atmospheric pressure, which is negatively correlated with the variation of atmospheric pressure, and the correlation is related to the angle between the measuring direction and the strike of nearby faults. It is considered that the geoelectric field has the characteristics of non-periodic change of atmospheric pressure is caused by the fluid “channeling” resulting from the change of air pressure system in the seepage process, which is due to the permeability difference between the bedrock pores and the nearby fault fractures.
2023, 45(1): 76-83.
doi: 10.11939/jass.20210162
Abstract:
In order to know whether there were seismic electrical signals before MS7.4 Maduo, Qinghai earthquake on 22 May 2021, this paper analyzed the original data of geoelectric field from Dawu seismic station by using the dominant azimuth method, and the variation characteristics of rockmass fracture structure before the MS7.4 Maduo earthquake were obtained. Furthermore, the rockmass frasture structure characteristics of eight geoelectric stations within 500 km of the earthquake and previous related earthquake cases are comprehensively analyzed. The results show that the geoelectric field dominant azimuths of the two observation sites at Dawu had a significantly synchronous deflection phenomenon eleven months before the earthquake, and the geoelectric field of one site increased sharply again one month before the earthquake. The abnormal characteristics of the site are mainly manifested as the rapid deflection of the jump range of the dominant azimuth, with the maximum deflection reaching 45°−90°. Additionally, the stations Garze and Maqu in the same secondary block showed quasisynchronous changes with the Dawu station, while the stations in other secondary blocks showed no anomalies, indicating that the abnormal responses are affected by regional tectonic settings. And combined with the previous earthquake case analyses, it is deduced that the dominant azimuth anomaly based on the Dawu electric field has good prediction efficiency for the short and medium term earthquake.
In order to know whether there were seismic electrical signals before MS7.4 Maduo, Qinghai earthquake on 22 May 2021, this paper analyzed the original data of geoelectric field from Dawu seismic station by using the dominant azimuth method, and the variation characteristics of rockmass fracture structure before the MS7.4 Maduo earthquake were obtained. Furthermore, the rockmass frasture structure characteristics of eight geoelectric stations within 500 km of the earthquake and previous related earthquake cases are comprehensively analyzed. The results show that the geoelectric field dominant azimuths of the two observation sites at Dawu had a significantly synchronous deflection phenomenon eleven months before the earthquake, and the geoelectric field of one site increased sharply again one month before the earthquake. The abnormal characteristics of the site are mainly manifested as the rapid deflection of the jump range of the dominant azimuth, with the maximum deflection reaching 45°−90°. Additionally, the stations Garze and Maqu in the same secondary block showed quasisynchronous changes with the Dawu station, while the stations in other secondary blocks showed no anomalies, indicating that the abnormal responses are affected by regional tectonic settings. And combined with the previous earthquake case analyses, it is deduced that the dominant azimuth anomaly based on the Dawu electric field has good prediction efficiency for the short and medium term earthquake.
2023, 45(1): 84-97.
doi: 10.11939/jass.20210116
Abstract:
Two surveying lines were carried out in Haojiapo and Xiaoshuiyu of Huaizhuo basin, Hebei Province, and four periods of Rn, CO2 and Hg concentrations were measured. This paper studies the spatial differences of soil gas geochemical characteristics in the southwest and northeast segments of the northern margin fault of the basin and its possible relationship with fault activity. The results show that the average concentrations of soil gas Rn, CO2 and soil Hg in Haojiapo profile are 8 371.16 Bq/m3, 0.85% and 14.82 ng/m3, respectively, and those in Xiaoshuiyu profile are 2 813.18 Bq/m3, 0.42% and 13.08 ng/m3 respectively, suggesting that the former are higher than the latter. The spatial difference of concentration distribution characteristics may be caused by different fault activity and fault fragmentation degree. The comparative analyses of regional soil Hg (total mercury, Hereinafter THg) concentration and soil gas measurement concentratio show that the two contents are consistent in spatial distribution, and the high-value abnormal points are distributed near the fault zone. Combined with the regional fixed-point precursory observation data and seismicity analyses, it is considered that the current activity of the fault is relatively weak. Therefore it is feasible to detect the shallow position of concealed faults in this area by using the distribution of soil gas concentration. At the same time, continuous observation of soil gas concentration has certain indicating significance for judging the fault activity in this area.
Two surveying lines were carried out in Haojiapo and Xiaoshuiyu of Huaizhuo basin, Hebei Province, and four periods of Rn, CO2 and Hg concentrations were measured. This paper studies the spatial differences of soil gas geochemical characteristics in the southwest and northeast segments of the northern margin fault of the basin and its possible relationship with fault activity. The results show that the average concentrations of soil gas Rn, CO2 and soil Hg in Haojiapo profile are 8 371.16 Bq/m3, 0.85% and 14.82 ng/m3, respectively, and those in Xiaoshuiyu profile are 2 813.18 Bq/m3, 0.42% and 13.08 ng/m3 respectively, suggesting that the former are higher than the latter. The spatial difference of concentration distribution characteristics may be caused by different fault activity and fault fragmentation degree. The comparative analyses of regional soil Hg (total mercury, Hereinafter THg) concentration and soil gas measurement concentratio show that the two contents are consistent in spatial distribution, and the high-value abnormal points are distributed near the fault zone. Combined with the regional fixed-point precursory observation data and seismicity analyses, it is considered that the current activity of the fault is relatively weak. Therefore it is feasible to detect the shallow position of concealed faults in this area by using the distribution of soil gas concentration. At the same time, continuous observation of soil gas concentration has certain indicating significance for judging the fault activity in this area.
2023, 45(1): 98-106.
doi: 10.11939/jass.20210155
Abstract:
We adopted the 2013 Lushan aftershocks as a typical example, to investigate the feasibility of estimating corner frequency and stress drop by the empirical Green’s function (EGF) spectral ratio method based on the strong motion observation data. Firstly, we suggested the quality standard on the EGF spectral ratio curve to guarantee the reliable estimation of seismic corner frequency and stress drop. The corner frequencies for the 17 Lushan aftershocks with magnitude in the range of 3.8−5.4 were then estimated. Referring to the seismic moment magnitude given by other studies, we further computed the seismic stress drops.The results show that the corner frequency of Lushan strong aftershocks is mainly in the range of 1.0−2.0 Hz, the average stress drop is 9.98 MPa, and seismic stress drop presents obvious dependency on seismic magnitude.
We adopted the 2013 Lushan aftershocks as a typical example, to investigate the feasibility of estimating corner frequency and stress drop by the empirical Green’s function (EGF) spectral ratio method based on the strong motion observation data. Firstly, we suggested the quality standard on the EGF spectral ratio curve to guarantee the reliable estimation of seismic corner frequency and stress drop. The corner frequencies for the 17 Lushan aftershocks with magnitude in the range of 3.8−5.4 were then estimated. Referring to the seismic moment magnitude given by other studies, we further computed the seismic stress drops.The results show that the corner frequency of Lushan strong aftershocks is mainly in the range of 1.0−2.0 Hz, the average stress drop is 9.98 MPa, and seismic stress drop presents obvious dependency on seismic magnitude.
2023, 45(1): 107-115.
doi: 10.11939/jass.20210182
Abstract:
Affected by the flat response range of the narrow-band seismograph, the narrow-band velocity recording has the problem of low-frequency component distortion, which limits the usable range of the seismic recording. To solve this problem, this paper deduces an improved transfer function based on the Laplace transform and bilinear transform to realize the correction from narrow-band seismic records to broadband ones. And then the Japanese Hi-net velocity records are used as an example for correction, and the corrected velocity records are compared with the KiK-net acceleration integral velocity records from the same station. The results show that the original velocity records are distorted at low frequencies, while the corrected waveforms are consistent with the KiK-net acceleration integral velocity records. The analyse show that the improved transfer function can effectively solve the distortion of the low-frequency components in the original velocity records, which effectively widens the usable range of low-frequency. Moreover, compared with the Nakata-corrected velocity recording method, the velocity recording corrected with the transfer function given in this paper is more accurate in terms of amplitude and waveform.
Affected by the flat response range of the narrow-band seismograph, the narrow-band velocity recording has the problem of low-frequency component distortion, which limits the usable range of the seismic recording. To solve this problem, this paper deduces an improved transfer function based on the Laplace transform and bilinear transform to realize the correction from narrow-band seismic records to broadband ones. And then the Japanese Hi-net velocity records are used as an example for correction, and the corrected velocity records are compared with the KiK-net acceleration integral velocity records from the same station. The results show that the original velocity records are distorted at low frequencies, while the corrected waveforms are consistent with the KiK-net acceleration integral velocity records. The analyse show that the improved transfer function can effectively solve the distortion of the low-frequency components in the original velocity records, which effectively widens the usable range of low-frequency. Moreover, compared with the Nakata-corrected velocity recording method, the velocity recording corrected with the transfer function given in this paper is more accurate in terms of amplitude and waveform.
2023, 45(1): 116-125.
doi: 10.11939/jass.20210136
Abstract:
In order to recover the attenuation loss caused by the vibration wave energy in the process of propagation, the inverse Q filtering method based on the convolution principle and the improved generalized S-transform is proposed. Through the vibration attenuation compensation model test, the time-frequency characteristics of the test data are analyzed by improving the generalized S-transform, and the energy distribution of the signal and the corresponding relationship between time and frequency are obtained. The method of quality factor based on convolution principle is used to obtain the time-varying Q value. The test data are processed using inverse Q filtering, and the vibration wave energy is compensated. The results show that the inverse Q filtering method proposed in this paper improves the compensation effect of seismic wave energy attenuation, broadens the frequency band of seismic data, improves the resolution of seismic data, and is conducive to the development of high-resolution seismic exploration, deep signal enhancement and oil and gas reservoir prediction.
In order to recover the attenuation loss caused by the vibration wave energy in the process of propagation, the inverse Q filtering method based on the convolution principle and the improved generalized S-transform is proposed. Through the vibration attenuation compensation model test, the time-frequency characteristics of the test data are analyzed by improving the generalized S-transform, and the energy distribution of the signal and the corresponding relationship between time and frequency are obtained. The method of quality factor based on convolution principle is used to obtain the time-varying Q value. The test data are processed using inverse Q filtering, and the vibration wave energy is compensated. The results show that the inverse Q filtering method proposed in this paper improves the compensation effect of seismic wave energy attenuation, broadens the frequency band of seismic data, improves the resolution of seismic data, and is conducive to the development of high-resolution seismic exploration, deep signal enhancement and oil and gas reservoir prediction.
2023, 45(1): 126-141.
doi: 10.11939/jass.20210173
Abstract:
Since the common root-mean-square method and noise power spectrum method cannot eliminate the noise interference recorded by different types of sensors, we use the maximum probability peak displacement as the background noise evaluation index to calculate the noise level more accurate. Based on the reliable noise data, referring to the magnitude maximum distance monitoring capability method and considering the timeliness of earthquake early warning (EEW), an EEW minimum magnitude evaluation method is proposed. This new method can systematically evaluate the minimum magnitude of EEW and the warning time of independent three types of sensor networks and their fusion networks in Fujian. The results show that the minimum magnitude of EEW based on the fusion networks of the seismometer and the strong seismometer is higher than that of the single seismometer network, and obviously lower than that of the strong seismometer network. For fusion networks of strong seismometer and intensity meter, the minimum magnitude of EEW is similar to that of single intensity meter network. After integrating three types of networks, the minimum magnitude of EEW in 95% regions is about ML3.2. Because the density of intensity meter network is higher than the seismometer and strong seismometer network, the warning time is the shortest. Compared with the single seismometer network or single strong seismometer network, the warning time of EEW has been significantly reduced by three types sensor fusion networks, and the warning time in 95% regions is 4−6 seconds after an earthquake occurred as it is estimated. This study provides a reference to optimize the distribution of networks and increase the monitoring capacity of key regions in Fujian province.
Since the common root-mean-square method and noise power spectrum method cannot eliminate the noise interference recorded by different types of sensors, we use the maximum probability peak displacement as the background noise evaluation index to calculate the noise level more accurate. Based on the reliable noise data, referring to the magnitude maximum distance monitoring capability method and considering the timeliness of earthquake early warning (EEW), an EEW minimum magnitude evaluation method is proposed. This new method can systematically evaluate the minimum magnitude of EEW and the warning time of independent three types of sensor networks and their fusion networks in Fujian. The results show that the minimum magnitude of EEW based on the fusion networks of the seismometer and the strong seismometer is higher than that of the single seismometer network, and obviously lower than that of the strong seismometer network. For fusion networks of strong seismometer and intensity meter, the minimum magnitude of EEW is similar to that of single intensity meter network. After integrating three types of networks, the minimum magnitude of EEW in 95% regions is about ML3.2. Because the density of intensity meter network is higher than the seismometer and strong seismometer network, the warning time is the shortest. Compared with the single seismometer network or single strong seismometer network, the warning time of EEW has been significantly reduced by three types sensor fusion networks, and the warning time in 95% regions is 4−6 seconds after an earthquake occurred as it is estimated. This study provides a reference to optimize the distribution of networks and increase the monitoring capacity of key regions in Fujian province.
2023, 45(1): 142-166.
doi: 10.11939/jass.20210163
Abstract:
Raising people’s disaster awareness is a prerequisite for motivating their behavior and strengthening their disaster-coping capacities. “Disaster awareness” has long been a very commonly used term in both academic community and ordinary people’s daily life. However, scientific discussion and exploration on it still remains far from sufficient so far. Using an integrated approach combined CiteSpace’s scientometric method and literature content analysis, this paper therefore aims to diagnose in particular the current status and future trends of the research of public awareness of disaster (PAD) in China that are evidenced by the relevant literature collected in CNKI from 1990—2019. The results reveal that: ① The PAD research has received an ever-increasing attention in China in the past three decades, involving a broad spectrum of disciplines and featured greatly by the multidisciplinary and/or interdisciplinary. However, the total publications and academic concerns on it are considerably less, and even much less than those on other disaster-focused topics (esp. those on disaster risk). ② Chinese existing PAD researches can be largely identified as the following five major aspects: PAD survey and measurement, PAD promotion pathways in formal education field, PAD encouragement strategies through science-popularization, PAD & bottom-up level of disaster reduction practices, and PAD & top-down direction of disaster reduction policies. Generally, large room for improvement exists on all these five aspects. In a view of specific hazard types addressed, earthquake and meteorological hazards have relatively been placed a concentrated position. ③ The overall trends or future directions are as follows: ① Specific research contents on PAD get more and more refined, associated exploration depths become deeper and deeper, and the situation of “all flowers bloom together” clearly develops; ② The connection between academic research and practical disaster reduction requirement grows tighter and tighter, especially so does the connection between research and bottom-up level requirement; ③ Disaster reduction-focused formal education and science-popularization, and meteorological disasters under changing climates are exactly the current hotspots. Based on these findings, we finally offered some suggestions, hoping to facilitate PAD research in China and beyond.
Raising people’s disaster awareness is a prerequisite for motivating their behavior and strengthening their disaster-coping capacities. “Disaster awareness” has long been a very commonly used term in both academic community and ordinary people’s daily life. However, scientific discussion and exploration on it still remains far from sufficient so far. Using an integrated approach combined CiteSpace’s scientometric method and literature content analysis, this paper therefore aims to diagnose in particular the current status and future trends of the research of public awareness of disaster (PAD) in China that are evidenced by the relevant literature collected in CNKI from 1990—2019. The results reveal that: ① The PAD research has received an ever-increasing attention in China in the past three decades, involving a broad spectrum of disciplines and featured greatly by the multidisciplinary and/or interdisciplinary. However, the total publications and academic concerns on it are considerably less, and even much less than those on other disaster-focused topics (esp. those on disaster risk). ② Chinese existing PAD researches can be largely identified as the following five major aspects: PAD survey and measurement, PAD promotion pathways in formal education field, PAD encouragement strategies through science-popularization, PAD & bottom-up level of disaster reduction practices, and PAD & top-down direction of disaster reduction policies. Generally, large room for improvement exists on all these five aspects. In a view of specific hazard types addressed, earthquake and meteorological hazards have relatively been placed a concentrated position. ③ The overall trends or future directions are as follows: ① Specific research contents on PAD get more and more refined, associated exploration depths become deeper and deeper, and the situation of “all flowers bloom together” clearly develops; ② The connection between academic research and practical disaster reduction requirement grows tighter and tighter, especially so does the connection between research and bottom-up level requirement; ③ Disaster reduction-focused formal education and science-popularization, and meteorological disasters under changing climates are exactly the current hotspots. Based on these findings, we finally offered some suggestions, hoping to facilitate PAD research in China and beyond.