Yang Mingbo, Yang Zhuzhuan, Zheng Yiwen, Ma Yuchuan, Wang Tongli, Han Kongyan, Cui Bowen, Xing Chengqi. 2017: Solid tide phenomenon of cold water source well temperature and its mechanism: Taking Huangcun well as an example. Acta Seismologica Sinica, 39(3): 420-428. DOI: 10.11939/jass.2017.03.011
Citation: Yang Mingbo, Yang Zhuzhuan, Zheng Yiwen, Ma Yuchuan, Wang Tongli, Han Kongyan, Cui Bowen, Xing Chengqi. 2017: Solid tide phenomenon of cold water source well temperature and its mechanism: Taking Huangcun well as an example. Acta Seismologica Sinica, 39(3): 420-428. DOI: 10.11939/jass.2017.03.011

Solid tide phenomenon of cold water source well temperature and its mechanism: Taking Huangcun well as an example

More Information
  • Received Date: June 10, 2016
  • Revised Date: February 17, 2017
  • Published Date: April 30, 2017
  • In this study, we conducted an observation to monitor water temperature solid tide phenomenon of cold water source well in Huangcun, and preliminarily interpreted its formation mechanism. Based on detailed monitoring data of water temperature gradient and the comparison of water temperatures in different depths, we concluded the following conclusions: ① The phase of water temperature solid tide of Huangcun well was opposite to that of water level. ② The water temperature gradient of Huangcun well was of concave-down type. The position that was greatly influenced by influent and effluent water of the aquifer or nearby concaved down the most, and the concave degree getting weaker with the increasing of the distance from the aquifer. ③ There is a rule between data from water temperature sensor and the distance from the observation aquifer: Tidal difference of water temperature became smaller with the increasing of distance until tidal variation faded away. It shows that the water temperature tide phenomenon of the cold-water source well is different from that of hot-water source well. One is endothermic process, and the other is exothermic process, which results in the different characteristics of water thermal dynamics.
  • 车用太, 鱼金子. 2013.井水温度观测中有待解决的若干基本问题[J].中国地震, 29(3): 306-315. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201303002.htm

    Che Y T, Yu J Z. 2013. Some basic problems in well water temperature observation[J]. Earthquake Research in China, 29(3): 306-315 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD201303002.htm
    车用太, 何案华, 鱼金子. 2014.水温微动态形成的水-热动力学与地热动力学机制[J].地震学报, 36(1): 106-117. http://www.dzxb.org/Magazine/Show?id=28929

    Che Y T, He A H, Yu J Z. 2014. Mechanisms of water-heat dynamics and earth-heat dynamics of well water temperature micro-behavior[J]. Acta Seismologica Sinica, 36(1): 106-117 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28929
    陈沅俊, 姚宝树. 1999.张北6.2级地震地温短临异常特征[J].地震, 19(2): 179-182. http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN902.009.htm

    Chen Y J, Yao B S. 1999. The features of geotemperature in short-term precursory anomalies before the Zhangbei earthquake with MS6.2[J]. Earthquake, 19(2): 179-182 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DIZN902.009.htm
    韩志文, 蒙格平. 2004.北京市大兴区岩溶地下水水位变化趋势分析[J].北京水利, (6): 21-22. http://www.cnki.com.cn/Article/CJFDTOTAL-BJSL200406010.htm

    Han Z W, Meng G P. 2004. Analysis of the trend of water level of karst groundwater in Daxing district, Beijing[J]. Beijing Water Resources, (6): 21-22. http://www.cnki.com.cn/Article/CJFDTOTAL-BJSL200406010.htm
    刘耀炜, 孙小龙, 王世芹, 任宏微. 2008.井孔水温异常与2007年宁洱6.4级地震关系分析[J].地震研究, 31(4): 347-353. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200804009.htm

    Liu Y W, Sun X L, Wang S Q, Ren H W. 2008. Relationship of bore-hole water temperature anomaly and the 2007 Ning'er M6.4 earthquake[J]. Journal of Seismological Research, 31(4): 347-353 (in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ200804009.htm
    马玉川. 2010. 井水温度潮汐效应及其应变响应能力研究[D]. 北京: 中国地震局地壳应力研究所: 33-45.

    Ma Y C. 2010. Tidal Effect of Well Water Temperature and Its Response to Strain[D]. Beijing: Institute of Crustal Dynamics, China Earthquake Administration: 33-45 (in Chinese).
    杨竹转. 2011. 地震波引起的井水位水温同震变化及其机理研究[D]. 北京: 中国地震局地质研究所: 70-76. http://www.cqvip.com/QK/92674X/201211/44119188.html

    Yang Z Z. 2011. Coseismic Variations of Well Water Level and Temperature Caused by Earthquake Waves and Their Generating Mechanisms[D]. Beijing: Institute of Geology, China Earthquake Administration: 70-76 (in Chinese). http://www.cqvip.com/QK/92674X/201211/44119188.html
    赵丹, 王广才. 2013.地下水位气压效应的消除及主要气压影响分波的识别[J].中国科学:技术科学, 43(1): 79-86. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201301010.htm

    Zhao D, Wang G C. 2013. Removing barometric pressure effects from groundwater level and identifying main influential constituents[J]. Science China Technological Sciences, 56: 129-136. http://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201301010.htm
    Esipko O A, Rosaev A E. 2007. The temperature monitoring in Vorotilovo deep well and global climate warming[J]. Geophys Res Abstr, 9: 00533. http://meetings.copernicus.org/www.cosis.net/abstracts/EGU2007/00533/EGU2007-J-00533.pdf
    Furuya I, Shimamura H. 1988. Groundwater microtemperature and strain[J]. Geophys J Int, 94(2): 345-353. doi: 10.1111/j.1365-246X.1988.tb05905.x
    Rosaev A E, Esipko O A. 2003. Lithospheric tidal effects from observations in deep wells[J]. Celest Mech Dyn Astr, 87(1/2): 203-207. doi: 10.1023/A:1026160111577
    Shimamura H, Ino M, Hikawa H, Iwasaki T. 1984. Groundwater microtemperature in earthquake regions[J]. Pure Appl Geophys, 122(6): 933-946. https://www.researchgate.net/publication/226126558_Groundwater_Microtemperature_in_Earthquake_Regions

Catalog

    Article views (723) PDF downloads (24) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return