Zhang Ning, Gao Yufeng, He Jia, Xu Jie, Chen Xin, Dai Denghui. 2017: Two-dimensional soil and topographic amplification effects of a partially filled circular-arc alluvial valley under plane SH waves. Acta Seismologica Sinica, 39(5): 778-797. DOI: 10.11939/jass.2017.05.012
Citation: Zhang Ning, Gao Yufeng, He Jia, Xu Jie, Chen Xin, Dai Denghui. 2017: Two-dimensional soil and topographic amplification effects of a partially filled circular-arc alluvial valley under plane SH waves. Acta Seismologica Sinica, 39(5): 778-797. DOI: 10.11939/jass.2017.05.012

Two-dimensional soil and topographic amplification effects of a partially filled circular-arc alluvial valley under plane SH waves

More Information
  • Received Date: January 21, 2017
  • Revised Date: July 22, 2017
  • Published Date: August 31, 2017
  • Site amplification consists of two-dimensional (2D) soil layer amplification effects and topographic amplification effects. The objective of this study is to investigate the relative contribution of soil amplification and topographic amplification. To that end, the wavefunction series solution for the scattering of plane SH waves by a partially filled circular-arc alluvial valley is proposed. The wavefunction series solution is obtained by a novel method of over-determined system of equations in the framework of the wavefunction expansion technique with the aid of a region-matching strategy. The convergence tests are conducted to reveal the necessity of the proposed over-determined system of equations method. The validity of the proposed solution is verified by comparison with previous results. By adjusting the material parameters of the two sub-regions in the analytical model, both of the surface motions of the alluvial valley and the empty canyon are calculated. The site amplification patterns of the alluvial valley are compared with the topographic amplification patterns of the empty canyon with the same geometry, the results show that the soil amplification effects are usually larger than the topographic amplification effects within the alluvial valley, while the topographic effects dominate the amplification pattern of ground motions outside the alluvial valley. Afterwards, a parametric study in terms of the maximum surface motion is carried out to determine the relative importance of soil and topographic contributions in a more comprehensive manner and to further characterize the 2D soil layer amplification effects. It is evident that the maximum soil layer amplification generally far outweighs the maximum topographic amplification. The 2D soil amplification increases with the impedance contrast between the soil layer and the underlying bedrock but is not a simple linear superposition of 1D soil amplification and 2D topographic amplification.
  • 巴振宁, 梁建文. 2014.瑞雷波斜入射下层状半空间中沉积谷地周围的三维散射研究[J].地震学报, 36(4): 571-583. http://www.dzxb.org/Magazine/Show?id=28985

    Ba Z N, Liang J W. 2014. 3D scattering by an alluvial valley embedded in a layered half-space for obliquely incident Rayleigh waves[J]. Acta Seismologica Sinica, 36(4): 571-583 (in Chinese). http://www.dzxb.org/Magazine/Show?id=28985
    刘中宪, 黄磊. 2015.含软夹层层状沉积谷地对P、SV和Rayleigh波的散射[J].地震工程与工程振动, 35(1): 105-117. http://www.cqvip.com/QK/95364X/201501/664249574.html

    Liu Z X, Huang L. 2015. P, SV and Rayleigh waves scattering in layered alluvial valleys with soft interlayer[J]. Earthquake Engineering and Engineering Vibration, 35(1): 105-117 (in Chinese). http://www.cqvip.com/QK/95364X/201501/664249574.html
    杨彩红, 梁建文, 张郁山. 2006.多层沉积凹陷地形对平面SH波散射问题的解析解[J].岩土力学, 27(12): 2191-2196. doi: 10.3969/j.issn.1000-7598.2006.12.020

    Yang C H, Liang J W, Zhang Y S. 2006. Analytical solution of scattering of plane SH waves around a canyon with multi-layered alluvia[J]. Rock and Soil Mechanics, 27(12): 2191-2196 (in Chinese). doi: 10.3969/j.issn.1000-7598.2006.12.020
    袁晓铭, 李雨润, 孙锐. 2002.圆弧状沉积盆地与软土单覆盖层出平面地表运动对比[J].地震工程与工程振动, 22(4): 16-21. http://d.wanfangdata.com.cn/Periodical/dzgcygczd200204003

    Yuan X M, Li Y R, Sun R. 2002. Comparison of out-of-plane surface ground motion between a circular-arc alluvial valley and a single overburden soft layer[J]. Earthquake Engineering and Engineering Vibration, 22(4): 16-21 (in Chinese). http://d.wanfangdata.com.cn/Periodical/dzgcygczd200204003
    Abramowitz M, Stegun I A. 1964. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables[M]. New York: Dover: 363.
    Assimaki D, Gazetas G. 2004. Soil and topographic amplification on canyon banks and the 1999 Athens earthquake[J]. J Earthq Eng, 8(1): 1-43. doi: 10.1142/S1363246904001250
    Assimaki D, Gazetas G, Kausel E. 2005a. Effects of local soil conditions on the topographic aggravation of seismic motion: Parametric investigation and recorded field evidence from the 1999 Athens earthquake[J]. Bull Seismol Soc Am, 95(3): 1059-1089. doi: 10.1785/0120040055
    Assimaki D, Kausel E, Gazetas G. 2005b. Soil-dependent topographic effects: A case study from the 1999 Athens earthquake[J]. Earthquake Spectra, 21(4): 929-966. doi: 10.1193/1.2068135
    Assimaki D, Kausel E. 2007. Modified topographic amplification factors for a single-faced slope due to kinematic soil-structure interaction[J]. J Geotech Geoenviron Eng, 133(11): 1414-1431. doi: 10.1061/(ASCE)1090-0241(2007)133:11(1414)
    Baise L G, Glaser S D, Dreger D. 2003. Site response at Treasure and Yerba Buena Islands, California[J]. J Geotech Geoenviron Eng, 129(6): 415-426. https://core.ac.uk/display/9084226
    Bielak J, Xu J F, Ghattas O. 1999. Earthquake ground motion and structural response in alluvial valleys[J]. J Geotech Geoenviron Eng, 125(5): 413-423. doi: 10.1061/(ASCE)1090-0241(1999)125:5(413)
    Cao H, Lee V W. 1989. Scattering of plane SH waves by circular cylindrical canyons with variable depth-to-width ratio[J]. Eur Earthq Eng, 3(2): 29-37. https://www.researchgate.net/publication/270979438_Scattering_of_plane_SH_waves_by_circular_cylindrical_canyons_with_variable_depth-to-width_ratio
    Chaillat S, Bonnet M, Semblat J F. 2009. A new fast multi-domain BEM to model seismic wave propagation and amplification in 3-D geological structures[J]. Geophys J Int, 177(2): 509-531. doi: 10.1111/gji.2009.177.issue-2
    Gao Y, Zhang N, Li D, Liu H, Cai Y, Wu Y. 2012. Effects of topographic amplification induced by a U-shaped canyon on seismic waves[J]. Bull Seismol Soc Am, 102(4): 1748-1763. doi: 10.1785/0120110306
    Gao Y, Zhang N. 2013. Scattering of cylindrical SH waves induced by a symmetrical V-shaped canyon: Near-source topographic effects[J]. Geophys J Int, 193(2): 874-885. doi: 10.1093/gji/ggs119
    Gatmiri B, Arson C. 2008. Seismic site effects by an optimized 2D BE/FE method Ⅱ. Quantification of site effects in two-dimensional sedimentary valleys[J]. Soil Dyn Earthquake Eng, 28(8): 646-661. doi: 10.1016/j.soildyn.2007.09.002
    Gatmiri B, Arson C, Nguyen K V. 2008. Seismic site effects by an optimized 2D BE/FE method Ⅰ. Theory, numerical optimization and application to topographical irregularities[J]. Soil Dyn Earthquake Eng, 28(8): 632-645. doi: 10.1016/j.soildyn.2007.09.001
    Gazetas G, Kallou P V, Psarropoulos P N. 2002. Topography and soil effects in the MS5.9 Parnitha (Athens) earthquake: The case of Adámes[J]. Natural Hazards, 27(1/2): 133-169. doi: 10.1023/A:1019937106428
    Gelagoti F, Kourkoulis R, Anastasopoulos I, Tazoh T, Gazetas G. 2010. Seismic wave propagation in a very soft alluvial valley: Sensitivity to ground-motion details and soil nonlinearity, and generation of a parasitic vertical component[J]. Bull Seismol Soc Am, 100(6): 3035-3054. doi: 10.1785/0120100002
    Gelagoti F, Kourkoulis R, Anastasopoulos I, Gazetas G. 2012. Nonlinear dimensional analysis of trapezoidal valleys subjected to vertically propagating SV waves[J]. Bull Seismol Soc Am, 102(3): 999-1017. doi: 10.1785/0120110182
    Harrington R F. 1967. Matrix methods for field problems[J]. Proc IEEE, 55(2): 136-149. doi: 10.1109/PROC.1967.5433
    Lanzo G, Pagliaroli A. 2009. Numerical modeling of site effects at San Giuliano di Puglia (Southern Italy) during the 2002 Molise seismic sequence[J]. J Geotech Geoenviron Eng, 135(9): 1295-1313. doi: 10.1061/(ASCE)GT.1943-5606.0000055
    Lee V W, Wu X. 1994. Application of the weighted residual method to diffraction by 2-D canyons of arbitrary shape: Ⅰ. Incident SH waves[J]. Soil Dyn Earthq Eng, 13(5): 355-364. doi: 10.1016/0267-7261(94)90026-4
    Lee V W, Chen S, Hsu I R. 1999. Antiplane diffraction from canyon above subsurface unlined tunnel[J]. J Eng Mech, 125(6): 668-675. doi: 10.1061/(ASCE)0733-9399(1999)125:6(668)
    Lee V W, Luo H, Liang J W. 2006. Antiplane (SH) waves diffraction by a semicircular cylindrical hill revisited: An improved analytic wave series solution[J]. J Eng Mech, 132(10): 1106-1114. doi: 10.1061/(ASCE)0733-9399(2006)132:10(1106)
    Luo H. 2008. Diffraction of SH-Waves By Surface or Sub-Surface Topographies With Application to Soil-Structure Interaction on Shallow Foundations[D]. Los Angeles: University of Southern California: 2-5.
    Psarropoulos P N, Tazoh T, Gazetas G, Apostolou M. 2007. Linear and nonlinear valley amplification effects on seismic ground motion[J]. Soils Found, 47(5): 857-871. doi: 10.3208/sandf.47.857
    Sánchez-Sesma F J. 1987. Site effects on strong ground motion[J]. Soil Dyn Earthquake Eng, 6(2): 124-132. doi: 10.1016/0267-7261(87)90022-4
    Seed H B, Idriss I M. 1969. Influence of soil conditions on ground motions during earthquakes[J]. J Soil Mech Found Div, 95(1): 99-138. http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0016200
    Semblat J F, Kham M, Parara E, Bard P Y, Pitilakis K, Makra K, Raptakis D. 2005. Seismic wave amplification: Basin geometry vs soil layering[J]. Soil Dyn Earthquake Eng, 25(7/10): 529-538. https://hal.archives-ouvertes.fr/hal-00107884/document
    Semblat J F, Lokmane N, Driad-Lebeau L, Bonnet G. 2010. Local amplification of deep mining induced vibrations part. 2: Simulation of ground motion in a coal basin[J]. Soil Dyn Earthquake Eng, 30(10): 947-957. doi: 10.1016/j.soildyn.2010.04.006
    Semblat J F. 2011. Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media[J]. Int J Geomech, 11(6): 440-448. doi: 10.1061/(ASCE)GM.1943-5622.0000023
    Todorovska M I, Lee V W. 1991. Surface motion of shallow circular alluvial valleys for incident plane SH waves-analytical solution[J]. Soil Dyn Earthquake Eng, 10(4): 192-200. doi: 10.1016/0267-7261(91)90033-V
    Trifunac M D. 1971. Surface motion of a semi-cylindrical alluvial valley for incident plane SH waves[J]. Bull Seismol Soc Am, 61(6): 1755-1770. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.529.9298
    Trifunac M D. 1972. Scattering of plane SH waves by a semi-cylindrical canyon[J]. Earthquake Eng Struct Dyn, 1(3): 267-281. doi: 10.1002/(ISSN)1096-9845
    Tsaur D H, Chang K H. 2008. SH-waves scattering from a partially filled semi-circular alluvial valley[J]. Geophys J Int, 173(1): 157-167. doi: 10.1111/gji.2008.173.issue-1
    Tsaur D H, Chang K H. 2009. Scattering of SH waves by truncated semicircular canyon[J]. J Eng Mech, 135(8): 862-870. doi: 10.1061/(ASCE)0733-9399(2009)135:8(862)
    Yuan X M, Men F L. 1992. Scattering of plane SH waves by a semi-cylindrical hill[J]. Earthquake Eng Struct Dyn, 21(12): 1091-1098. doi: 10.1002/(ISSN)1096-9845
    Yuan X M, Liao Z P. 1994. Scattering of plane SH waves by a cylindrical canyon of circular-arc cross-section[J]. Soil Dyn Earthquake Eng, 13(6): 407-412. doi: 10.1016/0267-7261(94)90011-6
    Yuan X M, Liao Z P. 1995. Scattering of plane SH waves by a cylindrical alluvial valley of circular-arc cross-section[J]. Earthquake Eng Struct Dyn, 24(10): 1303-1313. doi: 10.1002/(ISSN)1096-9845
    Zhang N, Gao Y F, Cai Y Q, Li D Y, Wu Y X. 2012a. Scattering of SH waves induced by a non-symmetrical V-shaped canyon[J]. Geophys J Int, 191(1): 243-256. doi: 10.1111/gji.2012.191.issue-1
    Zhang N, Gao Y F, Li D Y, Wu Y X, Zhang F. 2012b. Scattering of SH waves induced by a symmetrical V-shaped canyon: A unified analytical solution[J]. Earthquake Eng Eng Vib, 11(4): 445-460. doi: 10.1007/s11803-012-0135-z
    Zhang N, Gao Y F, Yang J, Xu C J. 2015. An analytical solution to the scattering of cylindrical SH waves by a partially filled semi-circular alluvial valley: Near-source site effects[J]. Earthquake Eng Eng Vib, 14(2): 189-201. doi: 10.1007/s11803-015-0016-3
    Zhang N, Gao Y F, Pak R Y S. 2017. Soil and topographic effects on ground motion of a surficially inhomogeneous semi-cylindrical canyon under oblique incident SH waves[J]. Soil Dyn Earthquake Eng, 95(1): 17-28. doi: 10.1080/13632460409350479?scroll=top&needAccess=true
  • Related Articles

Catalog

    Article views (704) PDF downloads (25) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return