Qiu Z W,Yu Y,Du Y,Zhou Z H. 2021. Numerical analysis of effect of reverse fault dislocation on tunnel engineering. Acta Seismologica Sinica43(2):237−244. DOI: 10.11939/jass.20200049
Citation: Qiu Z W,Yu Y,Du Y,Zhou Z H. 2021. Numerical analysis of effect of reverse fault dislocation on tunnel engineering. Acta Seismologica Sinica43(2):237−244. DOI: 10.11939/jass.20200049

Numerical analysis of effect of reverse fault dislocation on tunnel engineering

More Information
  • Received Date: April 02, 2020
  • Revised Date: May 26, 2020
  • Available Online: June 17, 2021
  • Published Date: March 14, 2021
  • The permanent deformation of surrounding rock caused by fault dislocation will do harm to tunnel structure. In order to study the deformation and stress characteristics of tunnel under reverse fault dislocation, this paper takes Yuelongmen tunnel project of Chengdu-Lanzhou railway crossing Beichuan-Yingxiu fault as the research object. Using Abaqus software, the numerical model of tunnel structure crossing reverse fault is established, parameters are selected and boundary conditions are set. The stress and deformation of tunnel lining structure under reverse fault displacement are simulated and analyzed. The results show that the S-shaped bending deformation of the tunnel lining structure is caused by the reverse fault dislocation, and the longitudinal stress of the lining structure increases with the increase of fault dislocation, which shows that the tensile and compressive stress distribution at the top and bottom of the lining is opposite. The tensile and compressive stresses at the top of the lining are greater than those at the bottom, and the compressive stresses at the top and bottom of the lining are greater than the tensile stresses.
  • 陈熹. 2017. 活动断层错动下跨断层隧道动力响应及破坏机理研究[D]. 成都: 西南交通大学: 10–19.
    Chen X. 2017. Study on Dynamic Response and Failure Mechanism of the Crossing-Fault Tunnel Under the Action of Active Fault[D]. Chengdu: Southwest Jiaotong University: 10–19 (in Chinese).
    胡辉. 2013. 穿越活动断层的隧道减震结构研究[D]. 成都: 西南交通大学: 55–57.
    Hu H. 2013. Study on Aseismic Structure for Tunnel Passing Through Active Fault[D]. Chengdu: Southwest Jiaotong University: 55–57 (in Chinese).
    焦鹏飞,来弘鹏. 2019. 不同倾角逆断层错动对隧道结构影响理论分析[J]. 土木工程学报,52(2):106–117.
    Jiao P F,Lai H P. 2019. Theoretical analysis on the influence of different dip angle reverse faults' dislocation on tunnel structure[J]. China Civil Engineering Journal,52(2):106–117 (in Chinese).
    邵润萌. 2011. 断层错动作用下隧道工程损伤及岩土失效扩展机理研究[D]. 北京: 北京交通大学: 13–28.
    Shao R M. 2011. Study on the Mechanism of Tunnel Damage and Geotechnical Failure Propagation Due to Fault Rupture[D]. Beijing: Beijing Jiaotong University: 13–28 (in Chinese).
    孙飞,张志强,易志伟. 2019. 正断层黏滑错动对地铁隧道结构影响的模型试验研究[J]. 岩土力学,40(8):3037–3044.
    Sun F,Zhang Z Q,Yi Z W. 2019. Model experimental study of the influence of normal fault with stick-slip dislocation on subway tunnel structure[J]. Rock and Soil Mechanics,40(8):3037–3044 (in Chinese).
    熊炜,范文,彭建兵,邓龙胜,闫芙蓉. 2010. 正断层活动对公路山岭隧道工程影响的数值分析[J]. 岩石力学与工程学报,29(增刊):2845–2852.
    Xiong W,Fan W,Peng J B,Deng L S,Yan F R. 2010. Numerical analysis of effect of normal fault activity on road mountain tunnel project[J]. Chinese Journal of Rock Mechanics and Engineering,29(S1):2845–2852 (in Chinese).
    张丽芬,姚运生. 2013. 震源动力学破裂过程数值模拟研究[J]. 地震学报,35(4):604–615. doi: 10.3969/j.issn.0253-3782.2013.04.014
    Zhang L F,Yao Y S. 2013. Review on numerical simulation of dynamic rupture process of earthquake source[J]. Acta Seismologica Sinica,35(4):604–615 (in Chinese).
    赵宝平. 2018. 逆断层错动对公路隧道影响研究[J]. 公路,63(11):329–332.
    Zhao B P. 2018. Study on the influence of reverse fault dislocation on highway tunnel[J]. Highway,63(11):329–332 (in Chinese).
    Kontogianni V A,Stiros S C. 2003. Earthquakes and seismic faulting:Effects on tunnels[J]. Turkish J Earth Sci,12(1):153–156.
  • Cited by

    Periodical cited type(7)

    1. 陈凯,潘华. 基于机器学习的区域地震动模拟——以2022年泸定M_S6.8地震为例. 地震学报. 2025(02): 242-253 . 本站查看
    2. 郑兴群,陶正如,白凯. 面向地震动估计需求的区域传播介质参数. 地震地质. 2024(05): 1091-1105 .
    3. 傅磊,谢俊举,陈苏,张斌,张旭,李小军. 四川地区场地放大系数特征分析及在强地震动模拟中的应用——以2022年芦山M_S6.1地震为例. 地球物理学报. 2023(07): 2933-2950 .
    4. 宣雨童,李孝波,欧阳刚垒,席书衡. 基于随机有限断层法的泸定6.8级地震强地面运动场重建. 防灾科技学院学报. 2023(04): 14-26 .
    5. 李小军,陈苏,任治坤,吕悦军,童华炜,温增平. 海域地震区划关键技术研究项目及研究进展. 地震科学进展. 2020(01): 2-19 .
    6. 傅磊,李小军,陈苏. 云南地区高频衰减参数特性初步研究. 应用基础与工程科学学报. 2019(06): 1294-1307 .
    7. 魏赛拉加,辛倩男,隋嘉,孙莹. 青海地区环境的地震灾害信息预测模型研究. 华南地震. 2019(04): 40-45 .

    Other cited types(6)

Catalog

    Article views (1047) PDF downloads (74) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return