Cao Z L,Tao X X,Tao Z R,Wang K Y. 2022. Research on bandwidth of ground motion simulated using FK approach. Acta Seismologica Sinica44(1):145−157. DOI: 10.11939/jass.20210093
Citation: Cao Z L,Tao X X,Tao Z R,Wang K Y. 2022. Research on bandwidth of ground motion simulated using FK approach. Acta Seismologica Sinica44(1):145−157. DOI: 10.11939/jass.20210093

Research on bandwidth of ground motion simulated using FK approach

More Information
  • Received Date: May 30, 2021
  • Revised Date: August 26, 2021
  • Available Online: January 26, 2022
  • Published Date: March 17, 2022
  • The application prospect of ground motion simulation approach is closely related to the effective bandwidth of synthetics. Hence we studied the simulation approach based on the frequency-wavenumber Green’s function (FK approach), and analyzed the key factors affecting the bandwidth and the treatment measures. On the basis of the calculation principle introduction, we summarized the main factors influencing the ground motion simulated by FK approach, and analyzed the influences of the crustal velocity model on sub-source seismic moment, rupture time and propagation time. Then, we analyzed the ability of the Green’s function to propagate broadband seismic waves, and put forward the recommended values of parameters affecting bandwidth in the calculation of Green’s function. The source time function and the rise time controlling the sub-source slip process are investigated to analyze the ability of source model in FK approach to radiate broadband seismic waves. The results show that the FK approach has the ability to simulate broadband ground motion, and this requires reasonable parameters and models.
  • 曹泽林,陶夏新. 2018. 基于频率波数域格林函数的宽频带地震动合成方法综述[J]. 地震工程与工程振动,38(5):35–42.
    Cao Z L,Tao X X. 2018. Review on broadband ground motion simulation based on frequency-wavenumber Green’s function[J]. Earthquake Engineering and Engineering Dynamics,38(5):35–42 (in Chinese).
    姜伟,陶夏新,赵凯. 2017. 基于NGA数据的震源模型全局参数定标律的统计[J]. 地震工程学报,39(2):221–226. doi: 10.3969/j.issn.1000-0844.2017.02.0221
    Jiang W,Tao X X,Zhao K. 2017. Scaling laws of the global parameters of source models from NGA data[J]. China Earthquake Engineering Journal,39(2):221–226 (in Chinese).
    孙晓丹,陶夏新. 2012. 宽频带地震动混合模拟方法综述[J]. 地震学报,34(4):571–577. doi: 10.3969/j.issn.0253-3782.2012.04.013
    Sun X D,Tao X X. 2012. Hybrid simulation of broadband ground motion:Overview[J]. Acta Seismologica Sinica,34(4):571–577 (in Chinese).
    Aki K, Richards P G. 2002. Quantitative Seismology[M]. 2nd ed. Sausalito, California: University Science Books: 37−62.
    Beresnev I A. 2002. Source parameters observable from the corner frequency of earthquake spectra[J]. Bull Seismol Soc Am,92(5):2047–2048. doi: 10.1785/0120010266
    Brune J N. 1970. Tectonic stress and the spectra of seismic shear waves from earthquakes[J]. J Geophys Res,75(26):4997–5009. doi: 10.1029/JB075i026p04997
    Cao Z L,Tao X X,Tao Z R,Tang A P. 2019. Kinematic source modeling for the synthesis of broadband ground motion using the f-k approach[J]. Bull Seismol Soc Am,109(5):1738–1757. doi: 10.1785/0120180294
    Day S M. 1982. Three-dimensional simulation of spontaneous rupture:The effect of nonuniform prestress[J]. Bull Seismol Soc Am,72(6A):1881–1902.
    Dreger D,Tinti E,Cirella A. 2007. Slip velocity function parameterization for broadband ground motion simulation[J]. Seismol Res Lett,78(2):308.
    Douglas J,Aochi H. 2008. A survey of techniques for predicting earthquake ground motions for engineering purposes[J]. Surv Geophys,29(3):187–220. doi: 10.1007/s10712-008-9046-y
    Fortuño C,de la Llera J C,Wicks C W,Abell J A. 2014. Synthetic hybrid broadband seismograms based on InSAR coseismic displacements[J]. Bull Seismol Soc Am,104(6):2735–2754. doi: 10.1785/0120130293
    Frankel A. 2009. A constant stress-drop model for producing broadband synthetic seismograms:Comparison with the Next Generation Attenuation relations[J]. Bull Seismol Soc Am,99(2A):664–680. doi: 10.1785/0120080079
    Graves R,Pitarka A. 2010. Broadband ground-motion simulation using a hybrid approach[J]. Bull Seismol Soc Am,100(5A):2095–2123. doi: 10.1785/0120100057
    Hao J L,Ji C,Wang W M,Yao Z X. 2013. Rupture history of the 2013 MW6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves[J]. Geophys Res Lett,40(20):5371–5376. doi: 10.1002/2013GL056876
    Hartzell S. 1978. Earthquake aftershocks as Green’s functions[J]. Geophys Res Lett,5(1):1–4. doi: 10.1029/GL005i001p00001
    Hartzell S,Guatteri M,Mai P M,Liu P C,Fisk M. 2005. Calculation of broadband time histories of ground motion,Part Ⅱ:Kinematic and dynamic modeling using theoretical Green’s functions and comparison with the 1994 Northridge earthquake[J]. Bull Seismol Soc Am,95(2):614–645. doi: 10.1785/0120040136
    Hartzell S,Liu P,Mendoza C,Ji C,Larson K M. 2007. Stability and uncertainty of finite-fault slip inversions:Application to the 2004 Parkfield,California,earthquake[J]. Bull Seismol Soc Am,97(6):1911–1934. doi: 10.1785/0120070080
    Hartzell S,Frankel A,Liu P,Zeng Y,Rahman S. 2011. Model and parametric uncertainty in source-based kinematic models of earthquake ground motion[J]. Bull Seismol Soc Am,101(5):2431–2452. doi: 10.1785/0120110028
    Irikura K,Miyake H. 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios[J]. Pure Appl Geophys,168(1/2):85–104.
    Kennett B L N. 2009. Seismic Wave Propagation in Stratified Media[M]. 2nd ed. Canberra: ANU Press: 59–100.
    Kieling K,Wang R,Hainzl S. 2014. Broadband ground-motion simulation using energy-constrained rise-time scaling[J]. Bull Seismol Soc Am,104(6):2683–2697. doi: 10.1785/0120140063
    Konno K,Ohmachi T. 1998. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bull Seismol Soc Am,88(1):228–241. doi: 10.1785/BSSA0880010228
    Liu P,Archuleta R J,Hartzell S H. 2006. Prediction of broadband ground-motion time histories:Hybrid low/high-frequency method with correlated random source parameters[J]. Bull Seismol Soc Am,96(6):2118–2130. doi: 10.1785/0120060036
    Motazedian D,Atkinson G M. 2005. Stochastic finite-fault modeling based on a dynamic corner frequency[J]. Bull Seismol Soc Am,95(3):995–1010.
    Sun X,Hartzell S,Rezaeian S. 2015. Ground-motion simulation for the 23 August 2011,Mineral,Virginia,earthquake using physics-based and stochastic broadband methods[J]. Bull Seismol Soc Am,105(5):2641–2661. doi: 10.1785/0120140311
    Tinti E,Fukuyama E,Piatanesi A,Cocco M. 2005. A kinematic source-time function compatible with earthquake dynamics[J]. Bull Seismol Soc Am,95(4):1211–1223. doi: 10.1785/0120040177
    Wang R. 1999. A simple orthonormalization method for stable and efficient computation of Green’s functions[J]. Bull Seismol Soc Am,89(3):733–741.
    Zhu L,Rivera L A. 2002. A note on the dynamic and static displacements from a point source in multilayered media[J]. Geophys J Int,148(3):619–627. doi: 10.1046/j.1365-246X.2002.01610.x
  • Cited by

    Periodical cited type(9)

    1. 余建胜,赵斌,董培育,刘刚,刘成利,徐锐,陈正松,黄功文,房立华,熊维,王明明,林牧,聂兆生,乔学军. GNSS约束的2022年泸定M6.8地震滑动分布及同震应力变化. 地球物理学报. 2024(03): 1022-1036 .
    2. 张亦凡,伍纯昊,李渝生,易树健. 同震岩体损伤特征的定量分析——以2022年泸定M_S6.8地震为例. 工程地质学报. 2024(03): 1020-1034 .
    3. 田钧灵,李育,代雨,孙乙,薛婧,彭彬,李勋,张艳. “9.5”泸定地震对土壤呼吸及团聚体有机质的影响. 现代农业研究. 2024(07): 98-103 .
    4. 李环宇,李东平,尹晶飞,李敏,孙海青. 新疆乌什7.1级地震人口热力及其应急响应功能分析. 地震工程学报. 2024(04): 992-1000 .
    5. 邬凯,易雪斌,付晓东,张磊,康景宇,袁泉,邵江. 泸定地震震中海螺沟景区道路地质灾害发育规律及灾后重建对策. 岩石力学与工程学报. 2024(08): 1909-1922 .
    6. 牛鹏飞,韩竹军,郭鹏,李科长,吕丽星. 2022年青海门源M_S6.9地震灾害致灾机理. 地震地质. 2024(04): 761-782 .
    7. 王鹏程,罗永红,刘红枫,景俊杰. “9·5”四川泸定M_s6.8级地震诱发磨西台地地震响应分析. 山地学报. 2024(04): 576-590 .
    8. 田钧灵,薛婧,代雨,孙乙,李育,周佳慧,罗林,邓金坤,张艳. “9·5”泸定地震对土壤团聚体及其碳储量的影响. 现代园艺. 2024(23): 6-9 .
    9. 匡萱,余斌,陈龙,董秀军. 基于无人机测量的泥石流固体颗粒图像识别与泥石流预警. 山地学报. 2023(05): 733-747 .

    Other cited types(3)

Catalog

    Article views (413) PDF downloads (96) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return