Dai K S,Wang S Q,Liu K,You Q Y. 2022. The nearest offset distance estimation method for multi-channel analysis of surface waves in slope. Acta Seismologica Sinica44(2):327−338. DOI: 10.11939/jass.20210098
Citation: Dai K S,Wang S Q,Liu K,You Q Y. 2022. The nearest offset distance estimation method for multi-channel analysis of surface waves in slope. Acta Seismologica Sinica44(2):327−338. DOI: 10.11939/jass.20210098

The nearest offset distance estimation method for multi-channel analysis of surface waves in slope

More Information
  • Received Date: June 03, 2021
  • Revised Date: July 12, 2021
  • Available Online: March 24, 2022
  • Published Date: April 23, 2022
  • In order to reduce the interference of energetic near-field body waves to surface wave identification and to ensure Rayleigh wave components with strong energy to be collected by multi-channel analysis of surface waves (MASW) method in the slope, this study firstly analyzed the Rayleigh wave propagation mechanism induced by the underground passive source on the slope. Secondly, based on geometric seismology, an empirical formula for the minimum offset of the Rayleigh wave generated on the sloping surface is proposed, and the layered slope with undulating interface is established so as to obtain the simulated common shot point records. Then by comparing the surface particle motion trajectory and dispersion calculation results obtained from the common shot point records with the theoretical values and estimated values, the results show that the four physical quantities have a strong correlation, which indicates that the proposed minimum offset estimation method in this study can be adopted to guide surface wave exploration of layered slopes.
  • 陈浩朋,朱良保,叶庆东,王清东. 2012. 多地震叠加提取双台间面波频散信息[J]. 地震学报,34(6):773–784. doi: 10.3969/j.issn.0253-3782.2012.06.004
    Chen H P,Zhu L B,Ye Q D,Wang Q D. 2012. Measurement of inter-station surface wave dispersion using multi-earthquake data stacking[J]. Acta Seismologica Sinica,34(6):773–784 (in Chinese).
    房立华,吴建平,王未来,王长在,杨婷. 2013. 华北地区勒夫波噪声层析成像研究[J]. 地球物理学报,56(7):2268–2279. doi: 10.6038/cjg20130714
    Fang L H,Wu J P,Wang W L,Wang C Z,Yang T. 2013. Love wave tomography from ambient seismic noise in North-China[J]. Chinese Journal of Geophysics,56(7):2268–2279 (in Chinese).
    冯梅,安美建,van der Lee S. 2008. 利用面波波形模拟探测中国大陆地壳和上地幔波速结构的分区特征[J]. 地震学报,30(2):114–122. doi: 10.3321/j.issn:0253-3782.2008.02.002
    Feng M,An M J,van der Lee S. 2008. Region-related features of crustal and upper-mantle velocity structure of the Chinese mainland detected by surface waveform modeling[J]. Acta Seismologica Sinica,30(2):114–122 (in Chinese).
    李白基,李宁,陈虹. 1989. 南北地震带和两侧的瑞利面波群速度差异及其大地构造意义[J]. 地震学报,11(3):268–274.
    Li B J,Li N,Chen H. 1989. Group velocity differences of Rayleigh waves between the NS seismic belt,China,and the side regions,and their tectonic implications[J]. Acta Seismologica Sinica,11(3):268–274 (in Chinese).
    刘康,戴靠山,许强,翁渝峰,黄李观,赵逍,游庆瑜. 2018. 埋入源多道面波分析(MASW)中最小偏移距的估计方法[J]. 地球物理学报,61(6):2421–2432. doi: 10.6038/cjg2018L0285
    Liu K,Dai K S,Xu Q,Weng Y F,Huang L G,Zhao X,You Q Y. 2018. Nearest offset design for multichannel analysis of surface waves (MASW) method with buried source excitations[J]. Chinese Journal of Geophysics,61(6):2421–2432 (in Chinese).
    刘庆华,鲁来玉,王凯明. 2015. 主动源和被动源面波浅勘方法综述[J]. 地球物理学进展,30(6):2906–2922. doi: 10.6038/pg20150660
    Liu Q H,Lu L Y,Wang K M. 2015. Review on the active and passive surface wave exploration method for the near-surface structure[J]. Progress in Geophysics,30(6):2906–2922 (in Chinese).
    沈玉松,康英. 2014. 广东及其邻域噪声面波层析成像[J]. 地震学报,36(5):826–836.
    Shen Y S,Kang Y. 2014. Surface wave tomography of Guangdong and its adjacent areas from ambient seismic noise[J]. Acta Seismologica Sinica,36(5):826–836 (in Chinese).
    王小龙,马胜利,郭志,雷兴林,夏英杰,郭欣,余国政,勾宪斌,蒋霞东. 2013. 利用地震背景噪声成像技术反演三峡库区及邻近地区地壳剪切波速度结构[J]. 地球物理学报,56(12):4113–4124. doi: 10.6038/cjg20131216
    Wang X L,Ma S L,Guo Z,Lei X L,Xia Y J,Guo X,Yu G Z,Gou X B,Jiang X D. 2013. S-wave velocity of the crust in Three Gorges Reservoir and the adjacent region inverted from seismic ambient noise tomography[J]. Chinese Journal of Geophysics,56(12):4113–4124 (in Chinese).
    席超强. 2017. 复杂地形条件下面波探查技术研究与应用[D]. 淮南: 安徽理工大学: 47–49.
    Xi C Q. 2017. Surface Wave Detection Research and Application Technology of Complex Terrain Condition[D]. Huainan: Anhui University of Science and Technology: 47–49 (in Chinese).
    夏江海,高玲利,潘雨迪,沈超,尹晓菲. 2015. 高频面波方法的若干新进展[J]. 地球物理学报,58(8):2591–2605. doi: 10.6038/cjg20150801
    Xia J H,Gao L L,Pan Y D,Shen C,Yin X F. 2015. New findings in high-frequency surface wave method[J]. Chinese Journal of Geophysics,58(8):2591–2605 (in Chinese).
    Aki K. 1957. Space and time spectra of stationary stochastic waves,with special reference to microtremors[J]. Bull Earthq Res Inst Tokyo,35:415–456.
    Capon J. 1970. Applications of detection and estimation theory to large array seismology[J]. Proc IEEE,58(5):760–770. doi: 10.1109/PROC.1970.7730
    Chai H K,Momoki S,Aggelis D G,Shiotani T. 2010. Characterization of deep surface-opening cracks in concrete:Feasibility of impact-generated Rayleigh-waves[J]. Mater J,107(3):305–311.
    Cristini P,Komatitsch D. 2012. Some illustrative examples of the use of a spectral-element method in ocean acoustics[J]. J Acoust Soc Am,131(3):EL229–EL235. doi: 10.1121/1.3682459
    Dai K S,Liu K,Li X F,You Q Y,Tang H S,Xu Q. 2019. Application of passive multichannel analysis of surface waves method at sites close to underground railways:Problems and a case study[J]. Appl Geophys,164:191–199. doi: 10.1016/j.jappgeo.2019.03.009
    Dikmen Ü,Arısoy M Ö,Akkaya İ. 2010. Offset and linear spread geometry in the MASW method[J]. J Geophys Eng,7(2):211–222. doi: 10.1088/1742-2132/7/2/S07
    Ewing W M,Jardetzky W S,Press F,Beiser A. 1957. Elastic waves in layered media[J]. Physics Today,10(12):2.
    Haskell N A. 1953. The dispersion of surface waves on multilayered media[J]. Bull Seismol Soc Am,43(1):17–34. doi: 10.1785/BSSA0430010017
    Isaacs R P. 1941. The finite differences of polygenic functions[J]. Bull Am Math Soc,47(6):6.
    Jones R. 1958. In-situ measurement of the dynamic properties of soil by vibration methods[J]. Géotechnique,8(1):1–21.
    Komatitsch D,Barnes C,Tromp J. 2012. Wave propagation near a fluid‐solid interface:A spectral‐element approach[J]. Geophysics,65(2):623–631.
    Lay T, Wallace T C. 1995. Modern Global Seismology[M]. California: Academic Press: 98−105.
    Malavika V A,Asraff A K,Kumar M,Sofi A. 2021. Fracture analysis of plates and shells using FEM and XFEM[J]. Innovat Infrastruct Solut,6(1):43. doi: 10.1007/s41062-020-00439-z
    Park C B,Miller R D. 2008. Roadside passive multichannel analysis of surface waves (MASW)[J]. J Environ Eng Geophys,13(1):1–11. doi: 10.2113/JEEG13.1.1
    Rayleigh L. 1885. On waves propagated along the plane surface of an elastic solid[J]. Proc Lond Math Soc,17(1):4–11. doi: 10.1112/plms/s1-17.1.4
    Stokoe K H, Wright S G, Bay J A, Roesset J M. 1994. Characterization of geotechnical sites by SASW method[G]//Geophysical Characterization of Sites. New Delhi: Oxford Publishers: 15–25.
    Xu Y X,Xia J H,Miller R D. 2006. Quantitative estimation of minimum offset for multichannel surface-wave survey with actively exciting source[J]. J Appl Geophys,59(2):117–125. doi: 10.1016/j.jappgeo.2005.08.002
    Zhang S X,Chan L S,Xia J H. 2004. The selection of field acquisition parameters for dispersion images from multichannel surface wave data[J]. J Pure Appl Geophys,161(1):185–201. doi: 10.1007/s00024-003-2428-7

Catalog

    Article views (422) PDF downloads (37) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return