Citation: | Liu Z F,He H Y,Chen Z,Li Y,Lu C,Shao J J,Gao Z H. 2023. Geochemical characteristics of soil gases on the Huangzhuang-Gaoliying fault in Beijing and their indications for seismic activity. Acta Seismologica Sinica,45(4):727−746. DOI: 10.11939/jass.20220036 |
陈志,杜建国,周晓成,崔月菊,刘雷,李营,张文来,高小其,许秋龙,王海涛. 2014. 2012年6月30日新源MS6.6地震前后北天山泥火山及温泉的水化学变化[J]. 地震,34(3):97–107. doi: 10.3969/j.issn.1000-3274.2014.03.009
|
Chen Z,Du J G,Zhou X C,Cui Y J,Liu L,Li Y,Zhang W L,Gao X Q,Xu Q L,Wang H T. 2014. Hydrogeochemical changes of mud volcanoes and springs in North Tianshan related to the June 30,2012 Xinyuan MS6.6 earthquake[J]. Earthquake,34(3):97–107 (in Chinese).
|
邓起东,张培震,冉勇康,杨晓平,闵伟,楚全芝. 2002. 中国活动构造基本特征[J]. 中国科学:地球科学,32(12):1020–1030.
|
Deng Q D,Zhang P Z,Ran Y K,Yang X P,Min W,Chu Q Z. 2003. Basic characteristics of active tectonics of China[J]. Science in China:Series D,46(4):356–372.
|
冯利斌. 2011. 北京未来科技城地裂缝成因机理及其防治对策研究[D]. 西安: 长安大学: 1–80.
|
Feng L B. 2011. The Study on Formation Mechanism and Prevention Countermeasures of Ground Fissures in the Future Science and Technology City of Beijing[D]. Xi’an: Chang’an University: 1–80 (in Chinese).
|
国家地震科学数字中心. 2021a. 中国历史地震目录[EB/OL]. [2021-07-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz.
|
National Earthquake Data Center. 2021a. Catalogue of Chinese historical earthquakes[EB/OL]. [2021-07-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_lsdz (in Chinese).
|
国家地震科学数字中心. 2021b. 中国台网正式地震目录[EB/OL]. [2021-07-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi.
|
National Earthquake Data Center. 2021b. Formal earthquakes catalogue of Chinese Seismic Networks[EB/OL]. [2021-07-01]. https://data.earthquake.cn/datashare/report.shtml?PAGEID=earthquake_zhengshi (in Chinese).
|
郭萌,王荣,王海刚,姜媛,刘明坤,田芳. 2013. 北京土沟—高丽营地裂缝成因分析[J]. 城市地质,8(2):5–8. doi: 10.3969/j.issn.1007-1903.2013.02.002
|
Guo M,Wang R,Wang H G,Jiang Y,Liu M K,Tian F. 2013. Discussion on the origin of Tugou-Gaoliying ground fissure[J]. Urban Geology,8(2):5–8 (in Chinese).
|
郭正府,郑国东,孙玉涛,张茂亮,张丽红,成智慧. 2017. 中国大陆地质源温室气体释放[J]. 矿物岩石地球化学通报,36(2):204–212. doi: 10.3969/j.issn.1007-2802.2017.02.003
|
Guo Z F, Zheng G D, Sun Y T, Zhang M L, Zhang L H, Cheng Z H. 2017. Greenhouse gases emitted from geological sources in China[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 36(2): 204–212 (in Chinese).
|
焦青,邱泽华,范国胜. 2005. 北京地区八宝山—黄庄—高丽营断裂的活动与地震[J]. 大地测量与地球动力学,25(4):50–54. doi: 10.3969/j.issn.1671-5942.2005.04.011
|
Jiao Q,Qiu Z H,Fan G S. 2005. Analysis on recent tectonic activity and seismicity of Babaoshan-Huangzhuang-Gaoliying fault in Beijing region[J]. Journal of Geodesy and Geodynamics,25(4):50–54 (in Chinese).
|
李静,陈志,陆丽娜,周晓成,李营. 2018. 夏垫活动断裂CO2、Rn、Hg脱气对环境的影响[J]. 矿物岩石地球化学通报,37(4):629–638.
|
Li J, Chen Z, Lu L N, Zhou X C, Li Y. 2018. Degassing of CO2, Rn and Hg from the Xiadian active fault and their environmental significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 37(4): 629–638 (in Chinese).
|
李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009
|
Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).
|
刘明坤,贾三满,陈柘舟,郭高轩. 2014. 北京平原区高丽营地裂缝带活动性及灾害特征研究[J]. 上海国土资源,35(4):53–57. doi: 10.3969/j.issn.2095-1329.2014.04.012
|
Liu M K,Jia S M,Chen Z Z,Guo G X. 2014. Study of the activity and impact of the Gaoliying ground fissure on the Beijing plain[J]. Shanghai Land and Resources,35(4):53–57 (in Chinese).
|
刘永梅,王华林,王纪强,周晓成,孙玉涛,陈志. 2016. 郯庐断裂带山东段土壤气体地球化学特征[J]. 地震地磁观测与研究,37(1):63–69.
|
Liu Y M,Wang H L,Wang J Q,Zhou X C,Sun Y T,Chen Z. 2016. Geochemical characteristics of soil gas (Rn,CO2 and Hg) in the Shandong section of Tanlu fault zone[J]. Seismological and Geomagnetic Observation and Research,37(1):63–69 (in Chinese).
|
刘兆飞,李营,陈志,崔月菊,路畅,杨江,赵元鑫. 2019. 吉兰泰断陷盆地周缘断裂带气体释放及其对断层活动性的指示意义[J]. 地震学报,41(5):613–632. doi: 10.11939/jass.20190025
|
Liu Z F,Li Y,Chen Z,Cui Y J,Lu C,Yang J,Zhao Y X. 2019. Gas emission from active fault zones around the Jilantai faulted depression basin and its implications for fault activities[J]. Acta Seismologica Sinica,41(5):613–632 (in Chinese).
|
刘兆飞. 2020. 鄂尔多斯西缘断裂带土壤气体地球化学特征[D]. 北京: 中国地震局地震预测研究所: 1–76.
|
Liu Z F. 2020. Soil Gas Geochemistry Characteristics in the Western Margin of the Ordos Block[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration: 1–76 (in Chinese).
|
马丽芳. 2002. 中国地质图集[M]. 北京: 地质出版社: 1–348.
|
Ma L F. 2002. Geological Atlas of China[M]. Beijing: Geology Publishing House: 1–348 (in Chinese).
|
苏鹤军,张慧,李晨桦,伍剑波,周慧玲. 2013. 西秦岭北缘断裂带断层气浓度空间分布特征与强震危险性分析[J]. 地震工程学报,35(3):671–676. doi: 10.3969/j.issn.1000-0844.2013.03.0671
|
Su H J,Zhang H,Li C H,Wu J B,Zhou H L. 2013. Geochemical features of fault gas on northern margin fault of Xiqinling and its seismic hazard analysis[J]. China Earthquake Engineering Journal,35(3):671–676 (in Chinese).
|
陶明信,徐永昌,史宝光,蒋忠惕,沈平,李晓斌,孙明良. 2005. 中国不同类型断裂带的地幔脱气与深部地质构造特征[J]. 中国科学:地球科学,35(5):441–451.
|
Tao M X, Xu Y C, Shi B G, Jiang Z T, Shen P, Li X B, Sun M L. 2005. Characteristics of mantle degassing and deep-seated geological structures in different typical fault zones of China[J]. Science in China: Series D, 48(7): 1074-1088.
|
王江,李营,陈志. 2017. 口泉断裂断层气地球化学变化特征及断层活动性[J]. 地震,37(1):39–51. doi: 10.3969/j.issn.1000-3274.2017.01.005
|
Wang J,Li Y,Chen Z. 2017. Gas geochemistry and activity of the Kouquan fault in Shanxi Province[J]. Earthquake,37(1):39–51 (in Chinese).
|
汪良谋,徐杰,黄秀铭,方仲景,张裕明,王辉. 1990. 北京拗陷构造活动性分析[J]. 中国地震,6(2):27–38.
|
Wang L M,Xu J,Huang X M,Fang Z J,Zhang Y M,Wang H. 1990. An analysis on the tectonic activities in Beijing down-warped basin[J]. Earthquake Research in China,6(2):27–38 (in Chinese).
|
王喜龙,李营,杜建国,陈志,周晓成,李新艳,崔月菊,王海燕,张志宏. 2017. 首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J]. 地震学报,39(1):85–101. doi: 10.11939/jass.2017.01.008
|
Wang X L,Li Y,Du J G,Chen Z,Zhou X C,Li X Y,Cui Y J,Wang H Y,Zhang Z H. 2017. Geochemical characteristics of soil gases Rn,Hg and CO2 and their genesis in the capital area of China[J]. Acta Seismologica Sinica,39(1):85–101 (in Chinese).
|
王云,赵慈平,冉华,陈坤华. 2015. 地壳流体CO2的释放与地震关系:回顾与展望[J]. 地震研究,38(1):119–130. doi: 10.3969/j.issn.1000-0666.2015.01.016
|
Wang Y,Zhao C P,Ran H,Chen K H. 2015. The relationship between the release of crustal fluid CO2 and earthquake:Retrospect and prospect[J]. Journal of Seismological Research,38(1):119–130 (in Chinese).
|
吴清,高孟潭. 2018. 北京地区与雄安新区地震危险性相关性初探[J]. 地震地质,40(4):935–943. doi: 10.3969/j.issn.0253-4967.2018.04.015
|
Wu Q,Gao M T. 2018. A preliminary study on the correlativity of seismic hazard between Beijing area and Xiong’an new area[J]. Seismology and Geology,40(4):935–943 (in Chinese).
|
徐杰,汪良谋,方仲景,张裕明,王辉,黄秀铭,杨主恩,计凤桔. 1992. 北京八宝山断裂和黄庄—高丽营断裂构造活动性的初步分析[J]. 华北地震科学,10(3):1–11.
|
Xu J,Wang L M,Fang Z J,Zhang Y M,Wang H,Huang X M,Yang Z E,Ji F J. 1992. Preliminary analysis of the tectonic activities of Babaoshan and Huangzhuang-Gaoliying faults in Beijing area[J]. North China Earthquake Sciences,10(3):1–11 (in Chinese).
|
徐平. 2006. 北京市地震监测志[M]. 北京: 地震出版社: 1–335.
|
Xu P. 2006. Earthquake Monitoring Records in Beijing[M]. Beijing: Seismological Press: 1–335 (in Chinese).
|
徐锡伟, 吴卫民, 张先康, 马胜利, 马文涛, 于贵华, 顾梦林, 江娃利. 2002. 首都圈地区地壳最新构造变动与地震[M]. 北京: 科学出版社: 1–376.
|
Xu X W, Wu W M, Zhang X K, Ma S L, Ma W T, Yu G H, Gu M L, Jiang W L. 2002. Latest Crustal Tectonic Change and Earthquakes in the Capital Area of China[M]. Beijing: Science Press: 1–376 (in Chinese).
|
杨景春,林伟凡,蒋铭,李格平. 1981. 北京八宝山断裂带近期构造活动及其和地震的关系[J]. 地震学报,3(4):390–398.
|
Yang J C,Lin W F,Jiang M,Li G P. 1981. Recent tectonic movement of the Babaoshan fault near Beijing and its relation to earthquake occurrences[J]. Acta Seismologica Sinica,3(4):390–398 (in Chinese).
|
张慧,张新基,苏鹤军,刘旭宙. 2010. 兰州市活动断层土壤气汞、氡地球化学特征场地试验[J]. 西北地震学报,32(3):273–278.
|
Zhang H,Zhang X J,Su H J,Liu X Z. 2010. Field test on the geochemical features of radon and mercury from soil gas on the active faults in Lanzhou[J]. Northwestern Seismological Journal,32(3):273–278 (in Chinese).
|
张磊,白凌燕,赵勇,张晓亮,杨天水,蔡向民,何付兵. 2017a. 北京南口—孙河断裂与黄庄—高丽营断裂交会区沉积速率差异对断裂活动性的响应[J]. 地震地质,39(5):1048–1065.
|
Zhang L,Bai L Y,Zhao Y,Zhang X L,Yang T S,Cai X M,He F B. 2017a. The difference of deposition rate in the boreholes at the junction between Nankou-Sunhe fault and Huangzhuang-Gaoliying fault and its response to fault activity in the Beijing area[J]. Seismology and Geology,39(5):1048–1065 (in Chinese).
|
张磊,张晓亮,白凌燕,杨天水,蔡向民,梁亚南. 2017b. 北京地区黄庄—高丽营断裂北段活动性研究与灾害效应分析[J]. 地质力学学报,23(4):548–557.
|
Zhang L,Zhang X L,Bai L Y,Yang T S,Cai X M,Liang Y N. 2017b. Activity study and disaster effect analysis of the north section of Huangzhuang-Gaoliying fault in Beijing[J]. Journal of Geomechanics,23(4):548–557 (in Chinese).
|
赵建明,李营,陈志,刘兆飞,赵荣琦,荣伟健. 2018. 蔚县—广灵断裂和口泉断裂气体排放和断裂活动性关系[J]. 地震地质,40(6):1402–1416.
|
Zhao J M,Li Y,Chen Z,Liu Z F,Zhao R Q,Rong W J. 2018. Correlation between gas geochemical emission and fault activity of the Yuxian-Guangling and Kouquan faults[J]. Seismology and Geology,40(6):1402–1416 (in Chinese).
|
赵帅,孟勇琦,孙佳珺. 2018. 基于S波波速变化的北京市高丽营地区地裂缝发展趋势研究[J]. 地球科学前沿,8(7):1123–1130.
|
Zhao S,Meng Y Q,Sun J J. 2018. Research in the trend of ground rupture development in Gaoliying of Beijing based on the variation of the S wave velocities[J]. Advances in Geosciences,8(7):1123–1130 (in Chinese). doi: 10.12677/AG.2018.87123
|
赵振燊,张慧,苏鹤军. 2011. 玛曲断裂带土壤气汞、氡地球化学特征[J]. 西北地震学报,33(4):376–379.
|
Zhao Z S,Zhang H,Su H J. 2011. The geochemical features of mercury and radon on Maqu active fault[J]. Northwestern Seismological Journal,33(4):376–379 (in Chinese).
|
周晓成. 2011. 汶川MS8.0地震后川西地区的气体地球化学[D]. 合肥: 中国科学技术大学: 1–79.
|
Zhou X C. 2011. Gas Geochemistry in Western Sichuan Related to 12 May 2008 Wenchuan MS8.0 Earthquake[D]. Hefei: University of Science and Technology of China: 1–79 (in Chinese).
|
周永恒,杨肖肖,丰成君,张鹏,孟静,谭成轩,邓亚虹,宋焱勋,王继明. 2021. 北京平原区黄庄—高丽营断裂(房山—涞水段)第四纪活动特征的浅层综合探测证据[J]. 地球学报,42(5):677–689. doi: 10.3975/cagsb.2020.012502
|
Zhou Y H,Yang X X,Feng C J,Zhang P,Meng J,Tan C X,Deng Y H,Song Y X,Wang J M. 2021. Evidence of shallow synthetic exploration of Quaternary activity characteristics along Fangshan-Laishui section of Huangzhuang-Gaoliying fault in Beijing plain[J]. Acta Geoscientica Sinica,42(5):677–689 (in Chinese).
|
Baixeras C,Erlandsson B,Font L,Jönsson G. 2001. Radon emanation from soil samples[J]. Radiat Meas,34(1/2/3/4/5/6):441–443.
|
Barberio M D,Gori F,Barbieri M,Billi A,Devoti R,Doglioni C,Petitta M,Riguzzi F,Rusi S. 2018. Diurnal and semidiurnal cyclicity of Radon (222Rn) in groundwater,Giardino Spring,central Apennines,Italy[J]. Water,10(9):1276. doi: 10.3390/w10091276
|
Barbosa S M,Zafrir H,Malik U,Piatibratova O. 2010. Multiyear to daily radon variability from continuous monitoring at the Amram tunnel,southern Israel[J]. Geophys J Int,182(2):829–842. doi: 10.1111/j.1365-246X.2010.04660.x
|
Biagi P F,Molchanov O,Piccolo R,Minafra A,Ermini A,Capozzi V,Khatkevich Y M,Gordeev E I. 2003. Co-postseismic hydrogeochemical anomalies in a volcanic environment[J]. Nat Hazards Earth Syst Sci,3(3/4):263–267. doi: 10.5194/nhess-3-263-2003
|
Biagi P F,Castellana L,Minafra A,Maggipinto G,Maggipinto T,Ermini A,Molchanov O,Khatkevich Y M,Gordeev E I. 2006. Groundwater chemical anomalies connected with the Kamchatka earthquake (M=7.1) on March 1992[J]. Nat Hazards Earth Syst Sci,6(5):853–859. doi: 10.5194/nhess-6-853-2006
|
Chen Z,Li Y,Liu Z F,Wang J,Zhou X C,Du J G. 2018. Radon emission from soil gases in the active fault zones in the Capital of China and its environmental effects[J]. Sci Rep,8(1):16772. doi: 10.1038/s41598-018-35262-1
|
Chen Z,Li Y,Liu Z F,Zheng G D,Xu W,Yan W,Yi L. 2019. CH4 and CO2 emissions from mud volcanoes on the southern margin of the Junggar basin,NW China:Origin,output,and relation to regional tectonics[J]. J Geophys Res:Solid Earth,124(5):5030–5044. doi: 10.1029/2018JB016822
|
Chiodini G,Frondini F,Kerrick D M,Rogie J,Parello F,Peruzzi L,Zanzari A R. 1999. Quantification of deep CO2 fluxes from Central Italy. Examples of carbon balance for regional aquifers and of soil diffuse degassing[J]. Chem Geol,159(1/2/3/4):205–222.
|
Crockett R G M,Gillmore G K,Phillips P S,Denman A R,Groves-Kirkby C J. 2006. Tidal synchronicity of built-environment radon levels in the UK[J]. Geophys Res Lett,33(5):L05308.
|
Fu C C,Walia V,Yang T F,Lee L C,Liu T K,Chen C H,Kumar A,Lin S J,Lai T H,Wen K L. 2017a. Preseismic anomalies in soil-gas radon associated with 2016 M6.6 Meinong earthquake,southern Taiwan[J]. Terr Atmos Ocean Sci,28(5):787–798. doi: 10.3319/TAO.2017.03.22.01
|
Fu C C,Yang T F,Tsai M C,Lee L C,Liu T K,Walia V,Chen C H,Chang W Y,Kumar A,Lai T H. 2017b. Exploring the relationship between soil degassing and seismic activity by continuous radon monitoring in the Longitudinal Valley of eastern Taiwan[J]. Chem Geol,469:163–175. doi: 10.1016/j.chemgeo.2016.12.042
|
Girault F,Schubnel A,Pili É. 2017. Transient radon signals driven by fluid pressure pulse,micro-crack closure,and failure during granite deformation experiments[J]. Earth Planet Sci Lett,474:409–418. doi: 10.1016/j.jpgl.2017.07.013
|
Han X,Li Y,Du J,Zhou X,Xie C,Zhang W. 2014. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China[J]. Nat Hazards Earth Syst Sci,14(10):2803–2815. doi: 10.5194/nhess-14-2803-2014
|
İnan S,Kop A,Çetin H,Kulak F,Pabuçcu Z,Seyis C,Ergintav S,Tan O,Saatçılar R,Bodur M N. 2012. Seasonal variations in soil radon emanation:Long-term continuous monitoring in light of seismicity[J]. Nat Hazards,62(2):575–591. doi: 10.1007/s11069-012-0096-6
|
Kitto M E. 2005. Interrelationship of indoor radon concentrations,soil-gas flux,and meteorological parameters[J]. J Radioanal Nucl Chem,264(2):381–385. doi: 10.1007/s10967-005-0725-6
|
Lehmann B E,Lehmann M,Neftel A,Tarakanov S V. 2000. Radon-222 monitoring of soil diffusivity[J]. Geophys Res Lett,27(23):3917–3920. doi: 10.1029/1999GL008469
|
Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)
|
Martinelli G. 1991. Fluidodynamical and chemical features of radon 222 related to total gases: Implications for earthquake predictions[C]//Isotopic and Geochemical Precursors of Earthquakes and Volcanic Eruptions. Vienna: International Atomic Energy Agency: 48–62.
|
Miklyaev P S,Petrova T B,Marennyy A M,Shchitov D V,Sidyakin P A,Murzabekov M А,Lopatin M N. 2020. High seasonal variations of the radon exhalation from soil surface in the fault zones (Baikal and North Caucasus regions)[J]. J Environ Radioact,219:106271. doi: 10.1016/j.jenvrad.2020.106271
|
Molchanov O,Schekotov A,Fedorov E,Belyaev G,Gordeev E. 2003. Preseismic ULF electromagnetic effect from observation at Kamchatka[J]. Nat Hazards Earth Syst Sci,3(3/4):203–209. doi: 10.5194/nhess-3-203-2003
|
Moreno V,Bach J,Font L,Baixeras C,Zarroca M,Linares R,Roqué C. 2016. Soil radon dynamics in the Amer fault zone:An example of very high seasonal variations[J]. J Environ Radioact,151:293–303. doi: 10.1016/j.jenvrad.2015.10.018
|
Papp B,Deák F,Horváth Á,Kiss Á,Rajnai G,Szabó C. 2008. A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole[J]. J Environ Radioact,99(11):1731–1735. doi: 10.1016/j.jenvrad.2008.05.005
|
Phong Thu H N,Van Thang N,Hao L C. 2020. The effects of some soil characteristics on radon emanation and diffusion[J]. J Environ Radioact,216:106189. doi: 10.1016/j.jenvrad.2020.106189
|
Richon P,Moreau L,Sabroux J C,Pili E,Salaün A. 2012. Evidence of both M2 and O1 Earth tide waves in radon-222 air concentration measured in a subglacial laboratory[J]. J Geophys Res:Solid Earth,117(B12):B12404.
|
Schekotov A Y,Molchanov O A,Hayakawa M,Fedorov E N,Chebrov V N,Sinitsin V I,Gordeev E E,Belyaev G G,Yagova N V. 2007. ULF/ELF magnetic field variations from atmosphere induced by seismicity[J]. Radio Sci,42(6):RS6S90.
|
Seminsky K Z,Demberel S,Tugarina M A,Ganzorig D,Bornyakov S A. 2013. First estimates of soil radon activity in the fault zones of central Mongolia[J]. Dokl Earth Sci,448(1):21–24. doi: 10.1134/S1028334X12110128
|
Seminsky K Z,Bobrov A A,Demberel S. 2014. Variations in radon activity in the crustal fault zones:Spatial characteristics[J]. Izv-Phys Solid Earth,50(6):795–813. doi: 10.1134/S1069351314060081
|
Shukla V,Chauhan V,Kumar N,Hazarika D. 2020. Assessment of Rn-222 continuous time series for the identification of anomalous changes during moderate earthquakes of the Garhwal Himalaya[J]. Appl Radiat Isot,166:109327. doi: 10.1016/j.apradiso.2020.109327
|
Wakita H,Nakamura Y,Kita I,Fujii N,Notsu K. 1980. Hydrogen release:New indicator of fault activity[J]. Science,210(4466):188–190. doi: 10.1126/science.210.4466.188
|
Winkler R,Ruckerbauer F,Bunzl K. 2001. Radon concentration in soil gas:A comparison of the variability resulting from different methods,spatial heterogeneity and seasonal fluctuations[J]. Sci Total Environ,272(1/2/3):273–282.
|
Yang Y,Li Y,Guan Z J,Chen Z,Zhang L,Lü C J,Sun F X. 2018. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan,southwestern of China[J]. Appl Geochem,89:23–33. doi: 10.1016/j.apgeochem.2017.11.006
|
Yuce G,Fu C C,D’Alessandro W,Gulbay A H,Lai C W,Bellomo S,Yang T F,Italiano F,Walia V. 2017. Geochemical characteristics of soil radon and carbon dioxide within the Dead Sea fault and Karasu fault in the Amik Basin (Hatay),Turkey[J]. Chem Geol,469:129–146. doi: 10.1016/j.chemgeo.2017.01.003
|
Zafrir H,Steinitz G,Malik U,Haquin G,Gazit-Yaari N. 2009. Response of Radon in a seismic calibration explosion,Israel[J]. Radiat Meas,44(2):193–198. doi: 10.1016/j.radmeas.2009.01.002
|
Zheng G D,Xu S,Liang S Y,Shi P L,Zhao J. 2013. Gas emission from the Qingzhu River after the 2008 Wenchuan earthquake,Southwest China[J]. Chem Geol,339:187–193. doi: 10.1016/j.chemgeo.2012.10.032
|
Zhou X C,Chen Z,Cui Y J. 2016. Environmental impact of CO2,Rn,Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan,China[J]. Environ Geochem Health,38(5):1067–1082. doi: 10.1007/s10653-015-9773-1
|