Citation: | Gong L W,Zhang H,Chen S,David A. Yuen,Chen L J,Brennan B,Yin G Y. 2023. Geometry features modeling of three-dimensional fault plane of Changning earthquake based on machine learning. Acta Seismologica Sinica,45(6):1040−1054. DOI: 10.11939/jass.20220079 |
In recent years, the seismicity of the Changning area in the Sichuan Province has increased significantly. Seismogenic models and seismogenic structures on the background of structural loading coupled with human activities have gradually become the focus of research in the field. Using abundant and accurate hypocenters in the Changning area, we established a program for automatically extracting morphological fault features by using machine learning algorithms including supervised classification and clustering. The method provides a reliable, detailed model of seismogenic faults for relative researches. As a result, four earthquake clusters were identified by clustering analysis, and four fracture planes were fit based on the distribution of hypocenters. The fracture plane on the Changning anticline spreads in NW-SE direction along a high velocity body beneath the Shizitan anticline. The fracture plane is straight with steep dip angle, and inclines SE. The three fracture planes in the inner part of the Jianwu syncline are mainly distributed in small scale on the limbs of the syncline with strike of NW, NNE, and NNW, respectively. They are also distributed in the periphery of the high-velocity body at the core of the Jianwu syncline, and their spreading directions are consistent with the strike of nodal planes of three main focal mechanism solutions in this area. Among these fracture planes, the Xincheng fracture plane extends deep to about 20 km and dips ENE with dip angle 70°. Based also on the geological tectonic settings and velocity structure, the fracture planes mainly exist in weak tectonic zones, such as the nucleus of the anticline and the limbs of the syncline. In particular, the fragile zone around the high-velocity body is more likely to rupture and nucleate under the loading of tectonic stress and industrial mining, forming new seismogenic structures.
常祖峰,张艳凤,王光明,张世民,毛泽斌,刘昌伟. 2020. 2019年四川长宁 MS6.0地震的地质构造成因:区域性构造节理贯通、破裂结果[J]. 地球学报,41(4):469–480. doi: 10.3975/cagsb.2020.030202
|
Chang Z F,Zhang Y F,Wang G M,Zhang S M,Mao Z B,Liu C W. 2020. The geological genesis of the 2019 Changning MS6.0 earthquake in Sichuan:Connecting and rupturing of regional structural joints[J]. Acta Geoscientica Sinica,41(4):469–480 (in Chinese).
|
宫悦,王宇玺,梁明剑,龙锋,赵敏. 2020. 2019年四川长宁6.0级地震序列时空演化特征及其地震构造环境研究[J]. 地震,40(4):90–102. doi: 10.12196/j.issn.1000-3274.2020.04.007
|
Gong Y,Wang Y X,Liang M J,Long F,Zhao M. 2020. Study on the spatio-temporal evolution characteristics and seismic structure environment of the 2019 M6.0 Changning Sichuan earthquake sequence[J]. Earthquake,40(4):90–102 (in Chinese).
|
郭祥云,蒋长胜,韩立波,尹海权,赵志远. 2022. 中国大陆及邻区震源机制数据集(2009—2021年)[DB/OL]. [2022-05-01].https://data.earthquake.cn/datashare/report.shtml?PAGEID=datasourcelist&dt=ff8080827e4d6cf5017f1f5b440d0019.
|
Guo X Y,Jiang C S,Han L B,Yin H Q,Zhao Z Y. 2022. Focal mechanism data set in Chinese mainland and its adjacent area (2009−2021)[DB/OL]. [2022-05-01].https://data.earthquake.cn/datashare/report.shtml?PAGEID=datasourcelist&dt=ff8080827e4d6cf5017f1f5b440d0019 (in Chinese).
|
郭志,高星,路珍. 2020. 2019年6月17日四川长宁地震重定位及震源机制研究[J]. 地震学报,42(3):245–255. doi: 10.11939/jass.20190132
|
Guo Z,Gao X,Lu Z. 2020. Relocation and focal mechanism inversion for the Changning,Sichuan,earthquake on 17 June 2019[J]. Acta Seismologica Sinica,42(3):245–255 (in Chinese).
|
何登发,鲁人齐,黄涵宇,王晓山,姜华,张伟康. 2019. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发,46(5):993–1006. doi: 10.11698/PED.2019.05.19
|
He D F,Lu R Q,Huang H Y,Wang X S,Jiang H,Zhang W K. 2019. Tectonic and geological background of the earthquake hazards in Changning shale gas development zone,Sichuan Basin,SW China[J]. Petroleum Exploration and Development,46(5):1051–1064.
|
胡晓辉,盛书中,万永革,卜玉菲,李振月. 2020. 2019年6月17日四川长宁地震序列震源机制与震源区震后构造应力场研究[J]. 地球物理学进展,35(5):1675–1681. doi: 10.6038/pg2020DD0378
|
Hu X H,Sheng S Z,Wan Y G,Bu Y F,Li Z Y. 2020. Study on focal mechanism and post-seismic tectonic stress field of the Changning,Sichuan,earthquake sequence on June 17th 2019[J]. Progress in Geophysics,35(5):1675–1681 (in Chinese).
|
胡幸平,崔效锋,张广伟,王甘娇,Zang A,史丙新,姜大伟. 2021. 长宁地区复杂地震活动的力学成因分析[J]. 地球物理学报,64(1):1–17. doi: 10.6038/cjg2021O0232
|
Hu X P,Cui X F,Zhang G W,Wang G J,Zang A,Shi B X,Jiang D W. 2021. Analysis on the mechanical causes of the complex seismicity in Changning area,China[J]. Chinese Journal of Geophysics,64(1):1–17 (in Chinese).
|
李大虎,詹艳,丁志峰,高家乙,吴萍萍,孟令媛,孙翔宇,张旭. 2021. 四川长宁 MS6.0地震震区上地壳速度结构特征与孕震环境[J]. 地球物理学报,64(1):18–35. doi: 10.6038/cjg2021O0241
|
Li D H,Zhan Y,Ding Z F,Gao J Y,Wu P P,Meng L Y,Sun X Y,Zhang X. 2021. Upper crustal velocity and seismogenic environment of the Changning MS6.0 earthquake region in Sichuan,China[J]. Chinese Journal of Geophysics,64(1):18–35 (in Chinese).
|
梁姗姗,徐志国,盛书中,张广伟,赵博,邹立晔. 2020. 2019年四川长宁6.0级地震主震及中强余震( MS≥4.0)的震源机制及其应力场[J]. 地震地质,42(3):547–561. doi: 10.3969/j.issn.0253-4967.2020.03.001
|
Liang S S,Xu Z G,Sheng S Z,Zhang G W,Zhao B,Zou L Y. 2020. Focal mechanism solutions and stress field of the 2019 Changning,Sichuan mainshock and its moderate-strong aftershocks ( MS≥4.0)[J]. Seismology and Geology,42(3):547–561 (in Chinese).
|
刘敬光,万永革,黄志斌,李振月,胡晓辉,李泽潇. 2019. 2019年6月17日四川长宁6.0级地震中心震源机制解及震源区构造应力场研究[J]. 震灾防御技术,14(3):677–685. doi: 10.11899/zzfy20190319
|
Liu J G,Wan Y G,Huang Z B,Li Z Y,Hu X H,Li Z X. 2019. Study on central focal mechanism and its surrounding tectonic stress field of the Changning M6.0 earthquake in Sichuan[J]. Technology for Earthquake Disaster Prevention,14(3):677–685 (in Chinese).
|
孙权,裴顺平,苏金蓉,刘雁冰,薛晓添,李佳蔚,李磊,左洪. 2021. 2019年6月17日四川长宁 MS6.0地震震源区三维速度结构[J]. 地球物理学报,64(1):36–53. doi: 10.6038/cjg2021O0246
|
Sun Q,Pei S P,Su J R,Liu Y B,Xue X T,Li J W,Li L,Zuo H. 2021. Three-dimensional seismic velocity structure across the 17 June 2019 Changning MS6.0 earthquake,Sichuan,China[J]. Chinese Journal of Geophysics,64(1):36–53 (in Chinese).
|
万永革. 2020. 震源机制与应力体系关系模拟研究[J]. 地球物理学报,63(6):2281–2296. doi: 10.6038/cjg2020M0472
|
Wan Y G. 2020. Simulation on relationship between stress regimes and focal mechanisms of earthquakes[J]. Chinese Journal of Geophysics,63(6):2281–2296 (in Chinese).
|
徐志国,梁姗姗,盛书中,张广伟,邹立晔,周元泽. 2020. 2019年四川长宁 MS6.0地震序列重定位和震源特征分析[J]. 地震学报,42(4):377–391. doi: 10.11939/jass.20190170
|
Xu Z G,Liang S S,Sheng S Z,Zhang G W,Zou L Y,Zhou Y Z. 2020. Relocation and source characteristics of the 2019 Changning MS6.0 earthquake sequence[J]. Acta Seismologica Sinica,42(4):377–391 (in Chinese).
|
易桂喜,龙锋,梁明剑,赵敏,王思维,宫悦,乔慧珍,苏金蓉. 2019. 2019年6月17日四川长宁 MS6.0地震序列震源机制解与发震构造分析[J]. 地球物理学报,62(9):3432–3447. doi: 10.6038/cjg2019N0297
|
Yi G X,Long F,Liang M J,Zhao M,Wang S W,Gong Y,Qiao H Z,Su J R. 2019. Focal mechanism solutions and seismogenic structure of the 17 June 2019 MS6.0 Sichuan Changning earthquake sequence[J]. Chinese Journal of Geophysics,62(9):3432–3447 (in Chinese).
|
赵明,唐淋,陈石,苏金蓉,张淼. 2021. 基于深度学习到时拾取自动构建长宁地震前震目录[J]. 地球物理学报,64(1):54–66. doi: 10.6038/cjg2021O0271
|
Zhao M,Tang L,Chen S,Su J R,Zhang M. 2021. Machine learning based automatic foreshock catalog building for the 2019 MS6.0 Changning,Sichuan earthquake[J]. Chinese Journal of Geophysics,64(1):54–66 (in Chinesc).
|
周志华. 2016. 机器学习[M]. 北京:清华大学出版社:114-115.
|
Zhou Z H. 2016. Machine Learning[M]. Beijing:Tsinghua University Press:114-115 (in Chinesc).
|
Al-Zoubi M B,Rawi M A. 2008. An efficient approach for computing Silhouette coefficients[J]. J Comput Sci,4(3):252–255. doi: 10.3844/jcssp.2008.252.255
|
Bergen K J,Johnson P A,de Hoop M V,Beroza G C. 2019. Machine learning for data-driven discovery in solid Earth geoscience[J]. Science,363(6433):1299. doi: 10.1126/science.aau0323
|
Brunsvik B,Morra G,Cambiotti G,Chiaraluce L,Di Stefano R,De Gori P,Yuen D A. 2021. Three-dimensional Paganica fault morphology obtained from hypocenter clustering (L’Aquila 2009 seismic sequence,Central Italy)[J]. Tectonophysics,804:228756. doi: 10.1016/j.tecto.2021.228756
|
Gong L W,Zhang H,Chen S,Chen L J. 2022. Three-dimensional modeling of the Xichang crust in Sichuan,China by machine learning[J]. Appl Sci,12(6):2955. doi: 10.3390/app12062955
|
Jia K,Zhou S Y,Zhuang J C,Jiang C S,Guo Y C,Gao Z H,Gao S S,Ogata Y,Song X D. 2020. Nonstationary background seismicity rate and evolution of stress changes in the Changning salt mining and shale-gas hydraulic fracturing region,Sichuan Basin,China[J]. Seismol Res Lett,91(4):2170–2181. doi: 10.1785/0220200092
|
Jiang C S,Han L B,Long F,Lai G J,Yin F L,Bi J M,Si Z Y. 2021. Spatiotemporal heterogeneity of b values revealed by a data-driven approach for the 17 June 2019 MS6.0 Changning earthquake sequence,Sichuan,China[J]. Nat Hazards Earth Syst Sci,21(7):2233–2244. doi: 10.5194/nhess-21-2233-2021
|
Jiang D W,Zhang S M,Ding R. 2020. Surface deformation and tectonic background of the 2019 MS6.0 Changning earthquake,Sichuan basin,SW China[J]. J Asian Earth Sci,200:104493. doi: 10.1016/j.jseaes.2020.104493
|
Kaven J O,Pollard D D. 2013. Geometry of crustal faults:Identification from seismicity and implications for slip and stress transfer models[J]. J Geophys Res: Solid Earth,118(9):5058–5070. doi: 10.1002/jgrb.50356
|
Keller J M,Gray M R,Givens J A. 1985. A fuzzy K-nearest neighbor algorithm[J]. IEEE Trans Syst Man Cybern,SMC-15(4):580–585. doi: 10.1109/TSMC.1985.6313426
|
Kong Q K,Trugman D T,Ross Z E,Bianco M J,Meade B J,Gerstoft P. 2019. Machine learning in seismology:Turning data into insights[J]. Seismol Res Lett,90(1):3–14. doi: 10.1785/0220180259
|
Kuang W H,Yuan C C,Zhang J. 2021. Real-time determination of earthquake focal mechanism via deep learning[J]. Nat Commun,12(1):1432. doi: 10.1038/s41467-021-21670-x
|
Li W,Ni S D,Zang C,Chu R S. 2020. Rupture directivity of the 2019 MW5.8 Changning,Sichuan,China,earthquake and implication for induced seismicity[J]. Bull Seismol Soc Am,110(5):2138–2153. doi: 10.1785/0120200013
|
Liu J Q,Zahradník J. 2020. The 2019 MW5.7 Changning earthquake,Sichuan Basin,China:A shallow doublet with different faulting styles[J]. Geophys Res Lett,47(4):e2019GL085408. doi: 10.1029/2019GL085408
|
Lu R Q,Xu X W,He D F,John S,Liu B,Wang F Y,Tan X B,Li Y Q. 2017. Seismotectonics of the 2013 Lushan MW6.7 earthquake:Inversion tectonics in the eastern margin of the Tibetan Plateau[J]. Geophys Res Lett,44(16):8236–8243. doi: 10.1002/2017GL074296
|
Lu R Q,He D F,Liu J Z,Tao W,Huang H Y,Xu F,Liu G S. 2021. Seismogenic faults of the Changning earthquake sequence constrained by high-resolution seismic profiles in the southwestern Sichuan Basin,China[J]. Seismol Res Lett,92(6):3757–3766. doi: 10.1785/0220200302
|
Ouillon G,Ducorbier C,Sornette D. 2008. Automatic reconstruction of fault networks from seismicity catalogs:Three-dimensional optimal anisotropic dynamic clustering[J]. J Geophys Res: Solid Earth,113(B1):B01306.
|
Reading A M,Cracknell M J,Bombardieri D J,Chalke T. 2015. Combining machine learning and geophysical inversion for applied geophysics[J]. ASEG Extended Abstracts,(1):1–5.
|
Ross Z E,Trugman D T,Hauksson E,Shearer P M. 2019. Searching for hidden earthquakes in southern California[J]. Science,364(6442):767–771. doi: 10.1126/science.aaw6888
|
Schubert E,Sander J,Ester M,Kriegel H P,Xu X W. 2017. DBSCAN revisited,revisited:Why and how you should (still) use DBSCAN[J]. ACM Trans Database Syst,42(3):19.
|
Sun X L,Yang P T,Zhang Z W. 2017. A study of earthquakes induced by water injection in the Changning salt mine area,SW China[J]. J Asian Earth Sci,136:102–109. doi: 10.1016/j.jseaes.2017.01.030
|
Trugman D T,Shearer P M. 2017. GrowClust:A hierarchical clustering algorithm for relative earthquake relocation,with application to the Spanish Springs and Sheldon,Nevada,earthquake sequences[J]. Seismol Res Lett,88(2A):379–391. doi: 10.1785/0220160188
|
Wang S,Jiang G Y,Weingarten M,Niu Y F. 2020. InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence[J]. Geophys Res Lett,47(16):e2020GL087603. doi: 10.1029/2020GL087603
|
Wang S,Jiang G Y,Lei X L,Barbour A J,Tan X B,Xu C J,Xu X W. 2022. Three MW≥4.7 earthquakes within the Changning (China) shale gas field ruptured shallow faults intersecting with hydraulic fracturing wells[J]. J Geophys Res: Solid Earth,127(2):e2021JB022946. doi: 10.1029/2021JB022946
|
Yin J X,Li Z F,Denolle M A. 2021. Source time function clustering reveals patterns in earthquake dynamics[J]. Seismol Res Lett,92(4):2343–2353. doi: 10.1785/0220200403
|
Zhang B,Lei J S,Zhang G W. 2020. Seismic evidence for influences of deep fluids on the 2019 Changning MS6.0 earthquake,Sichuan basin,SW China[J]. J Asian Earth Sci,200:104492. doi: 10.1016/j.jseaes.2020.104492
|
Zhang Z W,Liang C T,Long F,Zhao M,Wang D. 2022. Spatiotemporal variations of focal mechanism solutions and stress field of the 2019 Changning MS6.0 earthquake sequence[J]. Front Earth Sci,9:797907. doi: 10.3389/feart.2021.797907
|
Zuo K Z,Zhao C P,Zhang H J. 2020. 3D crustal structure and seismicity characteristics of Changning-Xingwen area in the southwestern Sichuan Basin,China[J]. Bull Seismol Soc Ama,110(5):2154–2167. doi: 10.1785/0120200085
|