Citation: | Qi W W,Xu C,Qiao Y X. 2024. Earthquake-triggered landslides detection in cloudy area of Haiti based on Google Earth Engine and Sentinel-2 time series data. Acta Seismologica Sinica,46(4):633−648. DOI: 10.11939/jass.20220168 |
Earthquakes can trigger numerous and widely distributed landslides. Rapid mapping of landslides with high accuracy is crucial for understanding their spatial patterns, and assessing landslide hazards and risks. Visual interpretation or automatic recognition are conventional methods for earthquake-triggered landslide mapping. Due to the influence of post-earthquake rainfall, cloud coverage rate of high-resolution optical remote sensing images is generally high, which limit investigation and assessment of earthquake-triggered landslides. Based on the Google Earth Engine platform, this work proposed a method for removing cloud and cloudless images using Sentinel-2 time series data and the cloud probability dataset. Through comparing performance of different time period, Sentinel-2 time series from 14th August 2021 to 31th January 2022 were chosen with 20% cloud coverage rate. This work masked all pixels covering by cloud and replaced them with cloud-free pixels in the images of adjacent time, producing high quality cloudless mosaic images covering the study area. The proposed method can improve the quality of post-earthquake images effectively. Then, an object-oriented model for earthquake-triggered landslide recognition is constructed based on the cloud-free mosaic images. Firstly, the multiscale segmentation algorithm was applied to the cloudless mosaic images to generate numerous objects. Then, multiple features were calculated based on every object, including spectral features, vegetation index and spatial proximity relationship between adjacent objects belonging to different class. Finally, earthquake-triggered landslides were classified used membership function based on thresholds of multiple features. Taking 2021 Haiti Nippes Earthquake as a case study, this work implemented the proposed method. Meanwhile, evaluation of classification results was carried out based on using manually interpreted landslides using high-resolution Planet images with 3-meter resolution in the validating area. The precision of the method is 77.5%, recall is 52.77% and F1 index is 62.79%. The results show that the proposed methods benefit earthquake-triggered landslides detection in the cloudy area and can provide technical support for post-disaster emergency investigation and assessment.
戴岚欣,许强,范宣梅,常鸣,杨琴,杨帆,任敬. 2017. 2017年8月8日四川九寨沟地震诱发地质灾害空间分布规律及易发性评价初步研究[J]. 工程地质学报,25(4):1151–1164.
|
Dai L X,Xu Q,Fan X M,Chang M,Yang Q,Yang F,Ren J. 2017. A preliminary study on spatial distribution patterns of landslides triggered by Jiuzhaigou earthquake in Sichuan on August 8th,2017 and their susceptibility assessment[J]. Journal of Engineering Geology,25(4):1151–1164 (in Chinese).
|
杜妍开,龚丽霞,李强,张景发. 2020. 基于最优分割的高分辨率遥感影像震害建筑物识别技术[J]. 地震学报,42(6):760–768.
|
Du Y K,Gong L X,Li Q,Zhang J F. 2020. Earthquake damage building identification technology based on high resolution remote sensing image with optimal segmentation[J]. Acta Seismologica Sinica,42(6):760–768 (in Chinese).
|
郭保. 2021. 基于Sentinel-2卫星遥感影像的去云方法研究[J]. 测绘与空间地理信息,44(10):150–152.
|
Guo B. 2021. Research on cloud removal method based on Sentinel-2 satellite remote sensing image[J]. Geomatics &Spatial Information Technology,44(10):150–152 (in Chinese).
|
李月臣,陈晋,刘春霞,曹鑫. 2006. 一种除去遥感影像薄云雾的方法[J]. 成都理工大学学报(自然科学版),33(1):58–63.
|
Li Y C,Chen J,Liu C X,Cao X. 2006. An effective approach to remove cloud-fog cover and enhance remote sensing imagery[J]. Journal of Chengdu University of Technology (Science &Technology Edition),33(1):58–63 (in Chinese).
|
刘广进,王光辉,毕卫华,刘慧杰,杨化超. 2022. 基于DenseNet与注意力机制的遥感影像云检测算法[J]. 自然资源遥感,34(2):88–96.
|
Liu G J,Wang G H,Bi W H,Liu H J,Yang H C. 2022. Cloud detection algorithm of remote sensing image based on DenseNet and attention mechanism[J]. Remote Sensing for Natural Resources,34(2):88–96 (in Chinese).
|
彭令,徐素宁,梅军军,苏凤环. 2017. 地震滑坡高分辨率遥感影像识别[J]. 遥感学报,21(4):509–518.
|
Peng L,Xu S N,Mei J J,Su F H. 2017. Earthquake-induced landslide recognition using high-resolution remote sensing images[J]. Journal of Remote Sensing,21(4):509–518 (in Chinese).
|
唐川,齐信,丁军,杨泰平,罗真富. 2010. 汶川地震高烈度区暴雨滑坡活动的遥感动态分析[J]. 地球科学,35(2):317–323.
|
Tang C,Qi X,Ding J,Yang T P,Luo Z F. 2010. Dynamic analysis on rainfall-induced landslide activity in high seismic intensity areas of the Wenchuan earthquake using remote sensing image[J]. Earth Science,35(2):317–323 (in Chinese). doi: 10.3799/dqkx.2010.033
|
王小娜,田金炎,李小娟,王乐,宫辉力,陈蓓蓓,李向彩,郭婧涵. 2022. Google Earth Engine云平台对遥感发展的改变[J]. 遥感学报,26(2):299–309.
|
Wang X N,Tian J Y,Li X J,Wang L,Gong H L,Chen B B,Li X C,Guo J H. 2022. Benefits of Google Earth Engine in remote sensing[J]. National Remote Sensing Bulletin,26(2):299–309 (in Chinese). doi: 10.11834/jrs.20211317
|
许冲,徐锡伟. 2012. 俯冲带地区压扭断裂型地震触发滑坡及其剥蚀厚度空间分布规律分析[J]. 工程地质学报,20(5):732–744.
|
Xu C,Xu X W. 2012. Spatial distribution of seismic landslides and their erosion thickness in subduction zone associated with shear-thrust earthquake faulting mode[J]. Journal of Engineering Geology,20(5):732–744 (in Chinese).
|
杨文涛,汪明,史培军,沈玲玲,刘连友. 2015. 基于地形因子分割、分类的面向对象滑坡快速识别方法[J]. 自然灾害学报,24(4):1–6.
|
Yang W T,Wang M,Shi P J,Shen L L,Liu L Y. 2015. Object-oriented rapid identification of landslides based on terrain factors segmentation and classification[J]. Journal of Natural Disasters,24(4):1–6 (in Chinese).
|
姚鑫,邓建辉,刘星洪,周振凯,姚佳明,戴福初,任开瑀,李凌婧. 2020. 青藏高原泛三江并流区活动性滑坡InSAR初步识别与发育规律分析[J]. 工程科学与技术,52(5):16–37.
|
Yao X,Deng J H,Liu X H,Zhou Z K,Yao J M,Dai F C,Ren K Y,Li L J. 2020. Primary recognition of active landslides and development rule analysis for pan three-river-parallel territory of Tibet Plateau[J]. Advanced Engineering Sciences,52(5):16–37 (in Chinese).
|
张诗茄,蒋建军,缪亚敏,白世彪. 2018. 基于SBAS技术的岷江流域潜在滑坡识别[J]. 山地学报,36(1):91–97.
|
Zhang S J,Jiang J J,Miao Y M,Bai S B. 2018. Application of the SBAS technique in potential landslide identification in the Minjiang watershed[J]. Mountain Research,36(1):91–97 (in Chinese).
|
赵孟银,郑小慎,刘文静. 2016. 基于相似像元替换的遥感影像厚云去除方法研究[J]. 计算机应用研究,33(11):3509–3512.
|
Zhao M Y,Zheng X S,Liu W J. 2016. Study of thick clouds removal from remotely sensed images based on similar pixel substitution approach[J]. Application Research of Computers,33(11):3509–3512 (in Chinese).
|
Aimaiti Y,Liu W,Yamazaki F,Maruyama Y. 2019. Earthquake-induced landslide mapping for the 2018 Hokkaido eastern Iburi earthquake using PALSAR-2 data[J]. Remote Sens,11(20):2351. doi: 10.3390/rs11202351
|
Comert R,Avdan U,Gorum T,Nefeslioglu H A. 2019. Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data[J]. Eng Geol,260:105264. doi: 10.1016/j.enggeo.2019.105264
|
Dou J,Chang K T,Chen S S,Yunus A,Liu J K,Xia H,Zhu Z F. 2015. Automatic case-based reasoning approach for landslide detection:Integration of object-oriented image analysis and a genetic algorithm[J]. Remote Sens,7(4):4318–4342. doi: 10.3390/rs70404318
|
Fan X M,Scaringi G,Korup O,West A J,van Westen C J,Tanyas H,Hovius N,Hales T C,Jibson R W,Allstadt K E,Zhang L M,Evans S G,Xu C,Li G,Pei X J,Xu Q,Huang R Q. 2019. Earthquake-induced chains of geologic hazards:Patterns,mechanisms,and impacts[J]. Rev Geophys,57(2):421–503. doi: 10.1029/2018RG000626
|
Guzzetti F,Mondini A C,Cardinali M,Fiorucci F,Santangelo M,Chang K T. 2012. Landslide inventory maps:New tools for an old problem[J]. Earth-Sci Rev,112(1/2):42–66.
|
Huang Y D,Xie C C,Li T,Xu C,He X L,Shao X Y,Xu X W,Zhan T,Chen Z N. 2023. An open-accessed inventory of landslides triggered by the MS6.8 Luding earthquake,China on September 5,2022[J]. Earthq Res Adv,3(1):100181. doi: 10.1016/j.eqrea.2022.100181
|
Intrieri E,Raspini F,Fumagalli A,Lu P,Del Conte S,Farina P,Allievi J,Ferretti A,Casagli N. 2018. The Maoxian landslide as seen from space:Detecting precursors of failure with Sentinel-1 data[J]. Landslides,15(1):123–133. doi: 10.1007/s10346-017-0915-7
|
Jia H Y,Wang Y J,Ge D Q,Deng Y K,Wang R. 2020. Improved offset tracking for predisaster deformation monitoring of the 2018 Jinsha river landslide (Tibet,China)[J]. Remote Sens Environ,247:111899. doi: 10.1016/j.rse.2020.111899
|
Keefer D K. 2002. Investigating landslides caused by earthquakes:A historical review[J]. Surv Geophys,23(6):473–510. doi: 10.1023/A:1021274710840
|
Kurtz C,Stumpf A,Malet J P,Gançarski P,Puissant A,Passat N. 2014. Hierarchical extraction of landslides from multiresolution remotely sensed optical images[J]. ISPRS J Photogramm Remote Sens,87:122–136. doi: 10.1016/j.isprsjprs.2013.11.003
|
Lambert M L,Gaudin J,Cohen R. 1987. Carte Geologique D’Haiti,Feuille Sud-Est:Port-au-Prince ,1∶250 000[CM].Paris:Paris Digital image and georeferencing.
|
Li M H,Zhang L,Ding C,Li W L,Luo H,Liao M S,Xu Q. 2020. Retrieval of historical surface displacements of the Baige landslide from time-series SAR observations for retrospective analysis of the collapse event[J]. Remote Sens Environ,240:111695. doi: 10.1016/j.rse.2020.111695
|
Li Q,Wang W,Wang J F,Zhang J F,Geng D. 2021. Exploring the relationship between InSAR coseismic deformation and earthquake-damaged buildings[J]. Remote Sens Environ,262:112508. doi: 10.1016/j.rse.2021.112508
|
Li Z B,Shi W Z,Myint S W,Lu P,Wang Q M. 2016. Semi-automated landslide inventory mapping from bitemporal aerial photographs using change detection and level set method[J]. Remote Sens Environ,175:215–230. doi: 10.1016/j.rse.2016.01.003
|
Lu P,Stumpf A,Kerle N,Casagli N. 2011. Object-oriented change detection for landslide rapid mapping[J]. IEEE Geosci Remote Sens Lett,8(4):701–705. doi: 10.1109/LGRS.2010.2101045
|
Lu P,Qin Y Y,Li Z B,Mondini A C,Casagli N. 2019. Landslide mapping from multi-sensor data through improved change detection-based Markov random field[J]. Remote Sens Environ,231:111235. doi: 10.1016/j.rse.2019.111235
|
Martinez S N,Allstadt K E,Slaughter S L,Schmitt R G,Collins E,Schaefer L N,Ellison S. 2021. Landslides Triggered by the August 14,2021,Magnitude 7.2 Nippes,Haiti,Earthquake[R]. Reston:U. S. Geological Survey:Open-File Report 2021-1112,17.
|
Mondini A C,Guzzetti F,Reichenbach P,Rossi M,Cardinali M,Ardizzone F. 2011. Semi-automatic recognition and mapping of rainfall induced shallow landslides using optical satellite images[J]. Remote Sens Environ,115(7):1743–1757. doi: 10.1016/j.rse.2011.03.006
|
Pan American Health Organization. 2021. Haiti earthquake situation report,MW7 (4 September 2021)[EB/OL].[2022−10−08]. https://iris.paho.org/handle/10665.2/54876.
|
Qiu H J,Cui P,Regmi A D,Hu S,Wang X G,Zhang Y Z. 2018. The effects of slope length and slope gradient on the size distributions of loess slides:Field observations and simulations[J]. Geomorphology,300:69–76. doi: 10.1016/j.geomorph.2017.10.020
|
Sentinel H. 2022. Sentinel-2 cloud detector[EB/OL]. [2022−04−16]. https://github.com/sentinel-hub/sentinel2-cloud-detector.
|
Shao X Y,Xu C,Wang P,Li L,He X L,Chen Z N,Huang Y D,Xu X W. 2022. Two public inventories of landslides induced by the 10 June 2022 Maerkang earthquake swarm,China and ancient landslides in the affected area[J]. Nat Hazards Res,2(4):269–272. doi: 10.1016/j.nhres.2022.09.001
|
Stumpf A,Kerle N. 2011. Object-oriented mapping of landslides using Random Forests[J]. Remote Sens Environ,115(10):2564–2577. doi: 10.1016/j.rse.2011.05.013
|
Sun W Y,Tian Y S,Mu X M,Zhai J,Gao P,Zhao G J. 2017. Loess landslide inventory map based on GF-1 satellite imagery[J]. Remote Sens,9(4):314. doi: 10.3390/rs9040314
|
Tian J Y,Wang L,Li X J,Gong H L,Shi C,Zhong R F,Liu X M. 2017. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of Mangrove Forest[J]. Int J Appl Earth Obs Geoinf,61:22–31.
|
USGS. 2021. A magnitude 7.2 (M7.2) earthquake struck Haiti on August 14,2021,at 8:29 am local time (August 14,2021 12:29 UTC)[EB/OL].[2022−09−08]. https://www.usgs.gov/news/featured-story/magnitude-72-earthquake-haiti.
|
Xu C,Xu X W,Yao X,Dai F C. 2014a. Three (nearly) complete inventories of landslides triggered by the May 12,2008 Wenchuan MW7.9 earthquake of China and their spatial distribution statistical analysis[J]. Landslides,11(3):441–461. doi: 10.1007/s10346-013-0404-6
|
Xu C,Shyu J B H,Xu X. 2014b. Landslides triggered by the 12 January 2010 Port-au-Prince,Haiti,MW7.0 earthquake:Visual interpretation,inventory compiling,and spatial distribution statistical analysis[J]. Nat Hazards Earth Syst Sci,14(7):1789–1818. doi: 10.5194/nhess-14-1789-2014
|
Zhang C,Sargent I,Pan X,Li H P,Gardiner A,Hare J,Atkinson P M. 2018. An object-based convolutional neural network (OCNN) for urban land use classification[J]. Remote Sens Environ,216:57–70. doi: 10.1016/j.rse.2018.06.034
|
Zhao B,Wang Y S,Li W L,Lu H Y,Li Z Y. 2022. Evaluation of factors controlling the spatial and size distributions of landslides,2021 Nippes earthquake,Haiti[J]. Geomorphology,415:108419. doi: 10.1016/j.geomorph.2022.108419
|
Zhou W,Ming D P,Lv X W,Zhou K Q,Bao H Q,Hong Z L. 2020. SO–CNN based urban functional zone fine division with VHR remote sensing image[J]. Remote Sens Environ,236:111458. doi: 10.1016/j.rse.2019.111458
|
2018: 《纪念汶川大地震十周年》专辑前言. Acta Seismologica Sinica, 40(3): 1-1. | |
Chen Lize, Shen Xuhui, Wang Hui, Hong Shunying, Jing Feng. 2016: Application of high-resolution remote sensing technique to earthquake studies in China. Acta Seismologica Sinica, 38(3): 333-344. DOI: 10.11939/jass.2016.03.002 | |
Xie Tao, Du Xuebin, Liu Jun, Fan Yingying, An Zhanghui, Chen Junying, Tan Dacheng. 2013: Wavelet power spectrum analysis of the electromagnetic signals of Wenchuan MS8.0 and Haiti MW7.0 earthquakes. Acta Seismologica Sinica, 35(1): 61-71. DOI: 10.3969/j.issn.0253-3782.2013.01.007 | |
2010: 震源参数对强地面震动模拟结果的影响 . Acta Seismologica Sinica, 32(1): 51-59. |
|
2004: 华东地区地电阻率各向异性度的地震前兆异常特征初步研究. Acta Seismologica Sinica, 26(2): 223-227. | |
1991: GEOMAGNETIC DAILY VARIATIONS AROUND THE HUANGHAI EARTHQUAKE. Acta Seismologica Sinica, 13(1): 76-79. | |
1988: DISCUSSION ON THE OCCURRENCE OF THE GROUP OF MODERATE EARTHQUAKES AT LIYANG, XINGTAI, HEZE AND SOUTH YELLOW SEA. Acta Seismologica Sinica, 10(3): 236-246. | |
ZHUO YURUup, HIROO KANAMORIup2 . 1988: SOURCE PARAMETERS OF THE BOHAI EARTHQUAKE OF 1969. Acta Seismologica Sinica, 10(2): 213-217. |
1. |
贾永斌,闫玮,祖丽皮牙·艾尼瓦尔,汪成国. 乌什M_S7.1地震引起新55井、新46井水位水温同震响应分析. 内陆地震. 2024(02): 158-165 .
![]() | |
2. |
梁卉,高小其,颜龙. 2023年2月6日土耳其两次7.8级地震引起的井水位同震响应对比分析. 地震. 2024(03): 96-107 .
![]() | |
3. |
洪旭瑜,陈祥开,秦双龙,林加宝. M_S≥6.0地震引起的永安井水位同震响应特征研究. 华南地震. 2023(03): 39-45 .
![]() | |
4. |
毛巍颖. 云南思茅大寨井与大理月溪井水位同震响应对比分析. 华南地震. 2022(01): 31-37 .
![]() | |
5. |
孙小龙,刘耀炜,付虹,晏锐. 我国地震地下流体学科分析预报研究进展回顾. 地震研究. 2020(02): 216-231+417 .
![]() | |
6. |
赵頔,张宝匀,丁谋谋,孙云山. 北京昌平井水位对日本M_W9.0地震的响应. 内陆地震. 2020(04): 347-354 .
![]() | |
7. |
方震,黄显良,汪小厉,杨源源,倪红玉,张彬. 庐江地热温泉1号井水氡远场强震震后效应及机理分析. 地震学报. 2020(06): 732-744+782 .
![]() | |
8. |
陆丽娜,李静,薛红盼,汪啸,张雷,王建. 赵各庄井地下流体的映震响应. 震灾防御技术. 2019(01): 174-190 .
![]() | |
9. |
崔瑾,丁风和,曾宪伟,司学芸. 宁夏井水位观测同震响应特征研究及机理探讨. 地球物理学进展. 2019(04): 1281-1287 .
![]() |