Processing math: 100%
Luo Cheng, Xie Junju, Wen Zengping. 2018: Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake. Acta Seismologica Sinica, 40(1): 108-120. DOI: 10.11939/jass.20170111
Citation: Luo Cheng, Xie Junju, Wen Zengping. 2018: Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake. Acta Seismologica Sinica, 40(1): 108-120. DOI: 10.11939/jass.20170111

Comparison of near-field surface and borehole ground motion observed during the Kumamoto MW7.0 earthquake

More Information
  • Received Date: March 08, 2017
  • Revised Date: June 26, 2017
  • Available Online: February 07, 2018
  • Published Date: December 31, 2017
  • We used the records of 82 near-field strong motion stations (KiK-net), which are within 200 km to the rupture fault of the Kumamoto MW7.0 earthquake, as database to derive near-field horizontal peak ground acceleration PGA, peak ground velocity PGV and spectra acceleration (period T=0.2, 1, 2, 3, 5, 10 s), after baseline correction we further compared them with the NGA-West2 ground motion model predictions. We investigated the attenuation and residuals distribution characteristics of these intensity measures (IMs), and shallow site-amplification effects by comparing surface and borehole ground motion records. The following conclusions can be drawn from our study: In the boreholes, NGA-West2 predictions are obviously greater than observations of PGA and T=0.2 s spectra acceleration, but close to the measured value in long-period IMs (spectra acceleration with T=1, 2, 3 s) and PGV. On surface, the residuals of observed PGV and T=0.2–3 s spectra acceleration show linear decrease tendency with the increase ofvS30, but the site effects affect little on the long-period spectra acce-leration. Surface records are greater than borehole in PGA, PGV and T=0.2, 1, 2 s spectra acceleration, and the amplification effects decrease with the increase of shallow site shear velocity; whereas the site amplification has little effects on the long-period spectra acceleration with T=3, 5, 10 s.
  • 李小军. 2016. 近海工程场地强地震动场模拟及地震稳定性, 国家重点基础研究发展计划(973计划)项目课题研究报告[R]. 北京: 中国地震局地球物理研究所: 14–16.
    Li X J. 2016. Simulation of Strong Ground Motion Field in Offshore Engineering Site and Seismic Stability, Project Research Report of National Program on Key Basic Research Project[R]. Beijing: Institute of Geophysics, China Earthquake Administration: 14–16 (in Chinese).
    王国权, 周锡元. 2004. 921台湾集集地震近断层强震记录的基线校正[J]. 地震地质, 26(1): 1-14.

    Wang G Q, Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 CHI-CHI, Taiwan earthquake[J]. Seismology and Geology, 26(1): 1-14 (in Chinese).
    谢俊举, 温增平, 高孟潭. 2013. 利用强震数据获取汶川地震近断层地面永久位移[J]. 地震学报, 35(3): 369-379.

    Xie J J, Wen Z P, Gao M T. 2013. Recovery of co-seismic deformation from strong motion records during the Wenchuan earthquake[J]. Acta Seismologica Sinica, 35(3): 369-379 (in Chinese).
    Abrahamson N A, Silva W J, Kamai R. 2014. Summary of the ASK14 ground motion relation for active crustal regions[J]. Earthq Spectra, 30(3): 1025-1055
    Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi, Taiwan, earthquake[J]. Bull Seismol Soc Am, 91(5): 1199-1211.
    Boore D M. 2004. Estimating ˉVS (30)(or NEHRP Site Classes)from shallow velocity models(depths < 30 m)[J]. Bull Seismol Soc Am, 94(2): 591-597.
    Boore D M, Thompson E M, Cadet H. 2011. Regional correlations of VS30 and velocities averaged over depths less than and greater than 30 Meters[J]. Bull Seismol Soc Am, 101(6): 3046-3059.
    Boore D M, Stewart J P, Seyhan E, Atkinson G M. 2014. NGA-West 2 equations for predicting PGA, PGV, and 5%-damped PSA for shallow crustal earthquakes[J]. Earthq Spectra, 30(3): 1057-1085.
    Campbell K W, Bozorgnia Y. 2014. NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra[J]. Earthq Spectra, 30(3): 1087-1115.
    Chiou B S J, Youngs R R. 2014. Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthq Spectra, 30(3): 1117-1153.
    Converse A M, Brady A G. 1992. BAP: Basic Strong-Motion Accelerogram Processing Software; Version 1.0, Open-File Report 92-296A[R]. Washington DC: US Geological Survey: 37–41.
    Gregor N, Abrahamson N A, Atkinson G M, Boore D M, Bozorgnia Y, Campbell K W, Chiou B S J, Idriss I M, Kamai R, Seyhan E, Silva W, Stewart J P, Youngs R. 2014. Comparison of NGA-West2 GMPEs[J]. Earthq Spectra, 30(3): 1179-1197.
    Idriss I M. 2014. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes[J]. Earthq Spectra, 24(1): 217-242.
    Iwan W D, Moser M A, Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am, 75(5): 1225-1246.
    Kaklamanos J, Baise L G, Boore D M. 2011. Estimating unknown input parameters when implementing the NGA ground-motion prediction equations in engineering practice[J]. Earthq Spectra, 27(4): 1219-1235.
    Kato A, Nakamura K, Hiyama Y. 2016. The 2016 Kumamoto earthquake sequence[J]. Proc Jpn Acad, Ser B, 92(8): 358-371.
    Luco N, Bachman R E, Crouse C B, Harris J R, Hooper J D, Kircher C A, Caldwell P J, Rukstales K S. 2015. Updates to building-code maps for the 2015 NEHRP recommended seismic provisions[J]. Earthq Spectra, 31(S1): S245-S271.
    NIED. 2016. Earthquake list[EB/OL]. [2017-06-12]. http://www.kyoshin.bosai.go.jp/kyoshin/quake/index_en.html.
    Rong M S, Wang Z M, Woolery E W, Lyu Y, Li X J, Li S Y. 2016. Nonlinear site response from the strong ground-motion recordings in western china[J]. Soil Dyn Earthq Eng, 82: 99-110.
    USGS. 2016. M7.0–1 km E of Kumamoto-shi, Japan[EB/OL]. [2016-12-10]. https://earthquake.usgs.gov/earthquakes/eventpage/us20005iis#finite-fault.
    Wen K L, Beresnev I A, Yeh Y T. 1994. Nonlinear soil amplification inferred from downhole strong seismic motion data[J]. Geophys Res Lett, 21(24): 2625-2628.
    Wu C Q, Peng Z G, Ben-Zion Y. 2010. Refined thresholds for non-linear ground motion and temporal changes of site response associated with medium-size earthquakes[J]. Geophys J Int, 182(3): 1567-1576.
    Xie J J, Zimmaro P, Li X J, Wen Z P. 2017. Rupture directivity effects on strong ground motion during the 15 April 2016 Mw7.0 Kumamoto earthquake in Japan[J]. Bull Seismol Soc Am, 107(3): 1265-1276. doi: 10.1785/0120160258.
  • Related Articles

  • Cited by

    Periodical cited type(5)

    1. 徐纪人,李海兵,曾祥芝,许健生,赵志新. 中国井下地震观测研究回顾与展望——从井下到东海深井垂直地震台阵. 地震学报. 2024(06): 919-935 . 本站查看
    2. 聂利英,冯江江,林浩然,王康,汪基伟. 基于反应谱衰减关系和理想化反应谱模型的我国规范谱长周期段研究. 地震工程与工程振动. 2022(02): 151-162 .
    3. 徐纪人,李海兵,曾祥芝,赵志新. 江苏东海深井观测地震波形及其信噪比研究. 地震学报. 2022(06): 1007-1018 . 本站查看
    4. 聂利英,王康,林浩然,帅娇娇,汪基伟. PGMD选波时规范反应谱局部场地效应参数研究. 武汉理工大学学报(交通科学与工程版). 2021(04): 743-751 .
    5. 李瑞山,袁晓铭. 场地放大系数的理论解答. 岩土工程学报. 2019(06): 1066-1073 .

    Other cited types(1)

Catalog

    Article views (1904) PDF downloads (90) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return