Citation: | Shen Wenhao, Yang Fang. 2018: Probabilistic aftershock hazard assessment for Jiuzhaigou MS7.0 earthquake in 2017. Acta Seismologica Sinica, 40(5): 654-663. DOI: 10.11939/jass.20170204 |
蒋长胜,庄建仓,吴忠良,毕金孟. 2017. 两种短期概率预测模型在2017年九寨沟7.0级地震中的应用和比较研究[J]. 地球物理学报,60(10):4132–4144 doi: 10.6038/cjg20171038
|
Jiang C S,Zhuang J C,Wu Z L,Bi J M. 2017. Application and comparison of two short-term probabilistic forecasting models for the 2017 Jiuzhaigou,Sichuan,MS7.0 earthquake[J]. Chinese Journal of Geophysics,60(10):4132–4144 (in Chinese) doi: 10.6038/cjg20171038
|
蒋海昆,郑建常,吴琼,曲延军,李永莉. 2007. 传染型余震序列模型震后早期参数特征及其地震学意义[J]. 地球物理学报,50(6):1778–1786
|
Jiang H K,Zheng J C,Wu Q,Qu Y J,Li Y L. 2007. Earlier statistical features of ETAS model parameters and their seismological meanings[J]. Chinese Journal of Geophysics,50(6):1778–1786 (in Chinese)
|
蒋海昆. 2010. 5·12汶川8.0级地震序列震后早期趋势判定及有关问题讨论[J]. 地球物理学进展,25(5):1528–1538
|
Jiang H K. 2010. Review of tendency judgement of the 5·12 Wenchuan M8 earthquake and discussion on some problems[J]. Progress in Geophysics,25(5):1528–1538 (in Chinese)
|
苏有锦,赵小艳. 2008. 全球8级地震序列特征研究[J]. 地震研究,31(4):308–316
|
Su Y J,Zhao X Y. 2008. Characteristics of global earthquake sequences with MW≥8.0[J]. Journal of Seismological Research,31(4):308–316 (in Chinese)
|
中国地震台网中心. 2017. 全国统一快报目录[EB/OL]. [2017-10-22]. http://www.csi.ac.cn/publish/main/813/5/index.html.
|
China Earthquake Networks Center. 2017. National bulletin[EB/OL]. [2017-10-22].http://www.csi.ac.cn/publish/main/813/5/index.html (in Chinese).
|
Båth M. 1965. Lateral inhomogeneities of the upper mantle[J]. Tectonophysics,2(6):483–514 doi: 10.1016/0040-1951(65)90003-X
|
Boore D M,Atkinson G M. 2008. Ground-motion prediction equations for the average horizontal component of PGA,PGV,and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthquake Spectra,24(1):99–138 doi: 10.1193/1.2830434
|
Campbell K W,Bozorgnia Y. 2008. NGA ground-motion model for the geometric mean horizontal component of PGA,PGV,PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s[J]. Earthquake Spectra,24(1):139–171 doi: 10.1193/1.2857546
|
Chiou B J,Youngs R R. 2008. An NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra,24(1):173–215
|
Console R,Lombardi A M,Murru M,Rhoades D. 2003. Båth’s law and the self-similarity of earthquakes[J]. J Geophys Res,108(B2):2128
|
Cornell C A. 1968. Engineering seismic risk analysis[J]. Bull Seismol Soc Am,58(5):1583–1606
|
Gallovič F,Brokešová J. 2008. Probabilistic aftershock hazard assessment I:Numerical testing of methodological features[J]. J Seismol,12(1):53–64 doi: 10.1007/s10950-007-9072-0
|
Gutenberg B,Richter C F. 1942. Earthquake magnitude,intensity,energy and acceleration[J]. Bull Seismol Soc Am,32(3):163–191
|
Hainzl S,Marsan D. 2008. Dependence of the Omori-Utsu law parameters on main shock magnitude:Observations and modeling[J]. J Geophys Res,113(B10):B10309 doi: 10.1029/2007JB005492
|
Hamdache M,Peláez J A,Kijko A,Smit A. 2017. Energetic and spatial characterization of seismicity in the Algeria-Morocco region[J]. Nat Hazards,86(S2):273–293 doi: 10.1007/s11069-016-2514-7
|
Helmstetter A,Sornette D. 2003. Båth’s law derived from the Gutenberg-Richter law and from aftershock properties[J]. Geophys Res Lett,30(20):2069
|
Kisslinger C,Jones L M. 1991. Properties of aftershocksequences in southern California[J]. J Geophys Res,96(B7):11947–11958 doi: 10.1029/91JB01200
|
Omori F. 1894. On after-shocks of earthquakes[J]. J Coll Sci Imp Univ Tokyo,7:111–200
|
Rodriguez-Marek A,Montalva G A,Cotton F,Bonilla F. 2011. Analysis of single-station standard deviation using the KiK-net data[J]. Bull Seismol Soc Am,101(3):1242–1258 doi: 10.1785/0120100252
|
Rodríguez-Pérez Q,Zúñiga F R. 2016. Båth’s law and its relation to the tectonic environment:A case study for earthquakes in Mexico[J]. Tectonophysics,687:66–77 doi: 10.1016/j.tecto.2016.09.007
|
Shcherbakov R,Turcotte D L. 2004. A modified form of Båth’s law[J]. Bull Seismol Soc Am,94(5):1968–1975 doi: 10.1785/012003162
|
Shcherbakov R,Turcotte D L,Rundle J B. 2004. Ageneralized Omori’s law for earthquake after shockdecay[J]. Geophys Res Lett,31(11):L11613 doi: 10.1029/2004GL019808
|
Shcherbakov R,Turcotte D L,Rundle J B. 2005. Aftershock statistics[J]. Pure Appl Geophys,162(6/7):1051–1076
|
Shcherbakov R,Goda K,Ivanian A,Atkinson G M. 2013. Aftershock statistics of major subduction earthquakes[J]. Bull Seismol Soc Am,103(6):3222–3234 doi: 10.1785/0120120337
|
Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. Geophys Mag,30:521–605
|
Utsu T,Ogata Y,Matsu'ura R S. 1995. The centenary of the Omori formula for a decay law of aftershock activity[J]. J Phys Earth,43(1):1–33 doi: 10.4294/jpe1952.43.1
|
Wiemer S,Katsumata K. 1999. Spatial variability of seismicity parameters in aftershock zones[J]. J Geophys Res,104(B6):13135–13151 doi: 10.1029/1999JB900032
|
Wiemer S. 2000. Introducing probabilistic aftershock hazard mapping[J]. Geophys Res Lett,27(20):3405–3408 doi: 10.1029/2000GL011479
|
Žalohar J. 2014. Explaining the physical origin of Båth's law[J]. J Struct Geol,60:30–45
|
1. |
陆天然,段梦乔,李子怡,周连庆. 人工智能地震分类研究进展综述. 地球物理学进展. 2025(01): 25-47 .
![]() | |
2. |
孟娟,李亚南,高强. 基于S谱能量曲线与卷积神经网络的天然地震与爆破事件分类识别. 地震学报. 2025(02): 232-241 .
![]() | |
3. |
李鸿儒,李夕海,牛超,张云,刘继昊,谭笑枫. 基于GA-XGBoost的天然地震与爆破的小样本分类. 地震学报. 2025(02): 221-231 .
![]() | |
4. |
彭登靖,王泽兰,马敏伟,马达. 昭通巡龙强夯土非天然地震记录特征及识别研究. 地震科学进展. 2024(03): 187-192 .
![]() | |
5. |
贾漯昭,孟令媛,闫睿. 深度学习在地震监测预报中的应用进展. 地震研究. 2024(03): 336-349 .
![]() | |
6. |
王婷婷,边银菊,任梦依,杨千里,侯晓琳. 地震事件分类识别软件. 地震. 2024(02): 104-119 .
![]() | |
7. |
彭登靖. 基于卷积神经网络的天然地震和非天然地震识别. 高原地震. 2024(02): 36-40 .
![]() | |
8. |
沈婕,朱景宝,缪发军,宋晋东,李山有. 基于残差神经网络的天然地震与非天然地震信号分类. 地震工程与工程振动. 2024(05): 13-25 .
![]() | |
9. |
曾晓燕,邱强,蒋策,周少辉,梁明,熊成. 基于卷积神经网络的地震与爆破识别模型及其在广东地区的初步应用. 地震学报. 2024(06): 1002-1013 .
![]() | |
10. |
谭笑枫,李夕海,牛超,曾小牛,李鸿儒,刘天佑. 基于MVIDA算法和MS-SE-Res Net的次声事件分类方法(英文). Applied Geophysics. 2024(04): 667-679+878-879 .
![]() | |
11. |
张帆,杨晓忠,王树波. 基于LSTM神经网络的地震事件分类. 计算机应用与软件. 2023(04): 75-79 .
![]() | |
12. |
章宇成,华卫. 白鹤滩水库库区基于深度学习的震相拾取与地震定位. 地震. 2023(01): 137-151 .
![]() | |
13. |
王泽兰. 昭通巡龙测震台强夯土事件与微震波形特征分析. 高原地震. 2023(03): 16-20+34 .
![]() | |
14. |
邵永谦,王国成,彭钊,于海英,王鹏,王成睿. 基于标准时频变换的上海地区地震与爆破识别. 华北地震科学. 2022(02): 48-55 .
![]() | |
15. |
田宵,汪明军,张雄,王向腾,盛书中,吕坚. 基于多输入卷积神经网络的天然地震和爆破事件识别. 地球物理学报. 2022(05): 1802-1812 .
![]() | |
16. |
郑杰,文畅,谢凯,盛冠群. 参数优选残差网络下的井震联合反演方法. 电子测量技术. 2022(12): 168-174 .
![]() | |
17. |
吴涛,庞聪,江勇,丁炜,廖成旺. 基于随机子空间和Ada Boost集成学习的地震事件性质辨识研究. 地球物理学进展. 2022(03): 981-988 .
![]() | |
18. |
刘涛,戴志军,陈苏,傅磊. 基于深度学习的地震震级分类. 地震学报. 2022(04): 656-664 .
![]() | |
19. |
孟娟,张家声,李亚南. 基于改进EWT和LogitBoost集成分类器的地震事件分类识别算法. 地震工程学报. 2022(05): 1233-1242 .
![]() | |
20. |
隗永刚,蒋长胜. 人工智能技术在地震减灾应用中的研究进展. 地球物理学进展. 2021(02): 516-524 .
![]() | |
21. |
程先琼,蒋科植. 基于深度降噪自编码神经网络的中国大陆地壳厚度反演. 地震学报. 2021(01): 34-47+136 .
![]() | |
22. |
谭笑枫,李夕海,刘继昊,李广帅,于晓彤. 基于一维卷积神经网络的化爆和地震次声分类. 应用声学. 2021(03): 457-467 .
![]() | |
23. |
周少辉,蒋海昆,曲均浩,李健,郭宗斌,郑旭. 爆破、塌陷识别研究进展综述. 中国地震. 2021(02): 508-522 .
![]() | |
24. |
唐婷婷,余思,陈江贻. 天然地震与人工爆破特征识别研究综述. 地震科学进展. 2021(09): 385-394 .
![]() | |
25. |
张帆,杨晓忠,吴立飞,韩晓明,王树波. 基于短时傅里叶变换和卷积神经网络的地震事件分类. 地震学报. 2021(04): 463-473+533 .
![]() | |
26. |
Ce Jiang,Lihua Fang,Liping Fan,Boren Li. Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes. Earthquake Science. 2021(05): 425-435 .
![]() |
|
27. |
高家乙,刘晓锋,闫睿. 河南平顶山平煤矿区天然地震、爆破、塌陷时频特征分析. 地震地磁观测与研究. 2020(03): 67-74 .
![]() | |
28. |
杨千里,王婷婷,边银菊. 基于广义S变换的地震与爆炸识别. 地震学报. 2020(05): 613-628+508 .
![]() |