Shen Wenhao, Yang Fang. 2018: Probabilistic aftershock hazard assessment for Jiuzhaigou MS7.0 earthquake in 2017. Acta Seismologica Sinica, 40(5): 654-663. DOI: 10.11939/jass.20170204
Citation: Shen Wenhao, Yang Fang. 2018: Probabilistic aftershock hazard assessment for Jiuzhaigou MS7.0 earthquake in 2017. Acta Seismologica Sinica, 40(5): 654-663. DOI: 10.11939/jass.20170204

Probabilistic aftershock hazard assessment for Jiuzhaigou MS7.0 earthquake in 2017

More Information
  • Received Date: November 23, 2017
  • Revised Date: March 08, 2018
  • Available Online: August 21, 2018
  • Published Date: August 31, 2018
  • Probabilistic aftershock hazard assessment is important to assess the hazard of aftershocks. In this paper, we introduce the concept of probabilistic aftershock hazard assessment, and give the formulas related to the method of it.In response to the Jiuzhaigou MS7.0 event in Sichuan Province in 2017, firstly, we obtained the related parameters of the aftershock. The results show that the maximum aftershock magnitude of the given aftershock sequence is about ML5.3. The b value of Jiuzhaigou event is about 0.784 1, which is lower than the same type of earthquake in southwest China, indicating that the stress level of the aftershock area is relatively high. The p value is about 1.109 7, obviously higher than events of the same type, which shows that this aftershock sequence decays faster with time. Secondly, according to the parameters estimation, 99.69% of the energy was released by the mainshock and the rest by the aftershocks. Finally, combining the aftershock sequence parameter and the attenuation relationship, we calculated the probability of exceedance certain level of peak ground acceleration and peak ground velocity in 0−1 day, 1−10 days, 10−30 days and 90−100 days intervals within different fault distances after the mainshock. The results show: ① The value of exceedance probability decreases with fault distance in the same time interval; ② The risk of aftershocks is highest in the first day after the mainshock; the exceedance probability value exhibits a downward trend with the increase of time, indicating that the aftershock hazard of the JiuzhaigouMS7.0 event mainly comes from early aftershocks. These results provide reference for aftershock risk analysis, and auxiliary decision-making opinions for short time emergency rescue and post disaster reconstruction.
  • 蒋长胜,庄建仓,吴忠良,毕金孟. 2017. 两种短期概率预测模型在2017年九寨沟7.0级地震中的应用和比较研究[J]. 地球物理学报,60(10):4132–4144 doi: 10.6038/cjg20171038
    Jiang C S,Zhuang J C,Wu Z L,Bi J M. 2017. Application and comparison of two short-term probabilistic forecasting models for the 2017 Jiuzhaigou,Sichuan,MS7.0 earthquake[J]. Chinese Journal of Geophysics,60(10):4132–4144 (in Chinese) doi: 10.6038/cjg20171038
    蒋海昆,郑建常,吴琼,曲延军,李永莉. 2007. 传染型余震序列模型震后早期参数特征及其地震学意义[J]. 地球物理学报,50(6):1778–1786
    Jiang H K,Zheng J C,Wu Q,Qu Y J,Li Y L. 2007. Earlier statistical features of ETAS model parameters and their seismological meanings[J]. Chinese Journal of Geophysics,50(6):1778–1786 (in Chinese)
    蒋海昆. 2010. 5·12汶川8.0级地震序列震后早期趋势判定及有关问题讨论[J]. 地球物理学进展,25(5):1528–1538
    Jiang H K. 2010. Review of tendency judgement of the 5·12 Wenchuan M8 earthquake and discussion on some problems[J]. Progress in Geophysics,25(5):1528–1538 (in Chinese)
    苏有锦,赵小艳. 2008. 全球8级地震序列特征研究[J]. 地震研究,31(4):308–316
    Su Y J,Zhao X Y. 2008. Characteristics of global earthquake sequences with MW≥8.0[J]. Journal of Seismological Research,31(4):308–316 (in Chinese)
    中国地震台网中心. 2017. 全国统一快报目录[EB/OL]. [2017-10-22]. http://www.csi.ac.cn/publish/main/813/5/index.html.
    China Earthquake Networks Center. 2017. National bulletin[EB/OL]. [2017-10-22].http://www.csi.ac.cn/publish/main/813/5/index.html (in Chinese).
    Båth M. 1965. Lateral inhomogeneities of the upper mantle[J]. Tectonophysics,2(6):483–514 doi: 10.1016/0040-1951(65)90003-X
    Boore D M,Atkinson G M. 2008. Ground-motion prediction equations for the average horizontal component of PGA,PGV,and 5%-damped PSA at spectral periods between 0.01 s and 10.0 s[J]. Earthquake Spectra,24(1):99–138 doi: 10.1193/1.2830434
    Campbell K W,Bozorgnia Y. 2008. NGA ground-motion model for the geometric mean horizontal component of PGA,PGV,PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s[J]. Earthquake Spectra,24(1):139–171 doi: 10.1193/1.2857546
    Chiou B J,Youngs R R. 2008. An NGA model for the average horizontal component of peak ground motion and response spectra[J]. Earthquake Spectra,24(1):173–215
    Console R,Lombardi A M,Murru M,Rhoades D. 2003. Båth’s law and the self-similarity of earthquakes[J]. J Geophys Res,108(B2):2128
    Cornell C A. 1968. Engineering seismic risk analysis[J]. Bull Seismol Soc Am,58(5):1583–1606
    Gallovič F,Brokešová J. 2008. Probabilistic aftershock hazard assessment I:Numerical testing of methodological features[J]. J Seismol,12(1):53–64 doi: 10.1007/s10950-007-9072-0
    Gutenberg B,Richter C F. 1942. Earthquake magnitude,intensity,energy and acceleration[J]. Bull Seismol Soc Am,32(3):163–191
    Hainzl S,Marsan D. 2008. Dependence of the Omori-Utsu law parameters on main shock magnitude:Observations and modeling[J]. J Geophys Res,113(B10):B10309 doi: 10.1029/2007JB005492
    Hamdache M,Peláez J A,Kijko A,Smit A. 2017. Energetic and spatial characterization of seismicity in the Algeria-Morocco region[J]. Nat Hazards,86(S2):273–293 doi: 10.1007/s11069-016-2514-7
    Helmstetter A,Sornette D. 2003. Båth’s law derived from the Gutenberg-Richter law and from aftershock properties[J]. Geophys Res Lett,30(20):2069
    Kisslinger C,Jones L M. 1991. Properties of aftershocksequences in southern California[J]. J Geophys Res,96(B7):11947–11958 doi: 10.1029/91JB01200
    Omori F. 1894. On after-shocks of earthquakes[J]. J Coll Sci Imp Univ Tokyo,7:111–200
    Rodriguez-Marek A,Montalva G A,Cotton F,Bonilla F. 2011. Analysis of single-station standard deviation using the KiK-net data[J]. Bull Seismol Soc Am,101(3):1242–1258 doi: 10.1785/0120100252
    Rodríguez-Pérez Q,Zúñiga F R. 2016. Båth’s law and its relation to the tectonic environment:A case study for earthquakes in Mexico[J]. Tectonophysics,687:66–77 doi: 10.1016/j.tecto.2016.09.007
    Shcherbakov R,Turcotte D L. 2004. A modified form of Båth’s law[J]. Bull Seismol Soc Am,94(5):1968–1975 doi: 10.1785/012003162
    Shcherbakov R,Turcotte D L,Rundle J B. 2004. Ageneralized Omori’s law for earthquake after shockdecay[J]. Geophys Res Lett,31(11):L11613 doi: 10.1029/2004GL019808
    Shcherbakov R,Turcotte D L,Rundle J B. 2005. Aftershock statistics[J]. Pure Appl Geophys,162(6/7):1051–1076
    Shcherbakov R,Goda K,Ivanian A,Atkinson G M. 2013. Aftershock statistics of major subduction earthquakes[J]. Bull Seismol Soc Am,103(6):3222–3234 doi: 10.1785/0120120337
    Utsu T. 1961. A statistical study on the occurrence of aftershocks[J]. Geophys Mag,30:521–605
    Utsu T,Ogata Y,Matsu'ura R S. 1995. The centenary of the Omori formula for a decay law of aftershock activity[J]. J Phys Earth,43(1):1–33 doi: 10.4294/jpe1952.43.1
    Wiemer S,Katsumata K. 1999. Spatial variability of seismicity parameters in aftershock zones[J]. J Geophys Res,104(B6):13135–13151 doi: 10.1029/1999JB900032
    Wiemer S. 2000. Introducing probabilistic aftershock hazard mapping[J]. Geophys Res Lett,27(20):3405–3408 doi: 10.1029/2000GL011479
    Žalohar J. 2014. Explaining the physical origin of Båth's law[J]. J Struct Geol,60:30–45
  • Related Articles

  • Cited by

    Periodical cited type(28)

    1. 陆天然,段梦乔,李子怡,周连庆. 人工智能地震分类研究进展综述. 地球物理学进展. 2025(01): 25-47 .
    2. 孟娟,李亚南,高强. 基于S谱能量曲线与卷积神经网络的天然地震与爆破事件分类识别. 地震学报. 2025(02): 232-241 . 本站查看
    3. 李鸿儒,李夕海,牛超,张云,刘继昊,谭笑枫. 基于GA-XGBoost的天然地震与爆破的小样本分类. 地震学报. 2025(02): 221-231 . 本站查看
    4. 彭登靖,王泽兰,马敏伟,马达. 昭通巡龙强夯土非天然地震记录特征及识别研究. 地震科学进展. 2024(03): 187-192 .
    5. 贾漯昭,孟令媛,闫睿. 深度学习在地震监测预报中的应用进展. 地震研究. 2024(03): 336-349 .
    6. 王婷婷,边银菊,任梦依,杨千里,侯晓琳. 地震事件分类识别软件. 地震. 2024(02): 104-119 .
    7. 彭登靖. 基于卷积神经网络的天然地震和非天然地震识别. 高原地震. 2024(02): 36-40 .
    8. 沈婕,朱景宝,缪发军,宋晋东,李山有. 基于残差神经网络的天然地震与非天然地震信号分类. 地震工程与工程振动. 2024(05): 13-25 .
    9. 曾晓燕,邱强,蒋策,周少辉,梁明,熊成. 基于卷积神经网络的地震与爆破识别模型及其在广东地区的初步应用. 地震学报. 2024(06): 1002-1013 . 本站查看
    10. 谭笑枫,李夕海,牛超,曾小牛,李鸿儒,刘天佑. 基于MVIDA算法和MS-SE-Res Net的次声事件分类方法(英文). Applied Geophysics. 2024(04): 667-679+878-879 .
    11. 张帆,杨晓忠,王树波. 基于LSTM神经网络的地震事件分类. 计算机应用与软件. 2023(04): 75-79 .
    12. 章宇成,华卫. 白鹤滩水库库区基于深度学习的震相拾取与地震定位. 地震. 2023(01): 137-151 .
    13. 王泽兰. 昭通巡龙测震台强夯土事件与微震波形特征分析. 高原地震. 2023(03): 16-20+34 .
    14. 邵永谦,王国成,彭钊,于海英,王鹏,王成睿. 基于标准时频变换的上海地区地震与爆破识别. 华北地震科学. 2022(02): 48-55 .
    15. 田宵,汪明军,张雄,王向腾,盛书中,吕坚. 基于多输入卷积神经网络的天然地震和爆破事件识别. 地球物理学报. 2022(05): 1802-1812 .
    16. 郑杰,文畅,谢凯,盛冠群. 参数优选残差网络下的井震联合反演方法. 电子测量技术. 2022(12): 168-174 .
    17. 吴涛,庞聪,江勇,丁炜,廖成旺. 基于随机子空间和Ada Boost集成学习的地震事件性质辨识研究. 地球物理学进展. 2022(03): 981-988 .
    18. 刘涛,戴志军,陈苏,傅磊. 基于深度学习的地震震级分类. 地震学报. 2022(04): 656-664 . 本站查看
    19. 孟娟,张家声,李亚南. 基于改进EWT和LogitBoost集成分类器的地震事件分类识别算法. 地震工程学报. 2022(05): 1233-1242 .
    20. 隗永刚,蒋长胜. 人工智能技术在地震减灾应用中的研究进展. 地球物理学进展. 2021(02): 516-524 .
    21. 程先琼,蒋科植. 基于深度降噪自编码神经网络的中国大陆地壳厚度反演. 地震学报. 2021(01): 34-47+136 . 本站查看
    22. 谭笑枫,李夕海,刘继昊,李广帅,于晓彤. 基于一维卷积神经网络的化爆和地震次声分类. 应用声学. 2021(03): 457-467 .
    23. 周少辉,蒋海昆,曲均浩,李健,郭宗斌,郑旭. 爆破、塌陷识别研究进展综述. 中国地震. 2021(02): 508-522 .
    24. 唐婷婷,余思,陈江贻. 天然地震与人工爆破特征识别研究综述. 地震科学进展. 2021(09): 385-394 .
    25. 张帆,杨晓忠,吴立飞,韩晓明,王树波. 基于短时傅里叶变换和卷积神经网络的地震事件分类. 地震学报. 2021(04): 463-473+533 . 本站查看
    26. Ce Jiang,Lihua Fang,Liping Fan,Boren Li. Comparison of the earthquake detection abilities of PhaseNet and EQTransformer with the Yangbi and Maduo earthquakes. Earthquake Science. 2021(05): 425-435 .
    27. 高家乙,刘晓锋,闫睿. 河南平顶山平煤矿区天然地震、爆破、塌陷时频特征分析. 地震地磁观测与研究. 2020(03): 67-74 .
    28. 杨千里,王婷婷,边银菊. 基于广义S变换的地震与爆炸识别. 地震学报. 2020(05): 613-628+508 . 本站查看

    Other cited types(12)

Catalog

    Article views (1271) PDF downloads (63) Cited by(40)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return