Gao Yaqi, Shi Baoping. 2019: Numerical investigation of heating effect on the earthquake faulting based on the Chester-Higgs model. Acta Seismologica Sinica, 41(1): 13-32. DOI: 10.11939/jass.20170229
Citation: Gao Yaqi, Shi Baoping. 2019: Numerical investigation of heating effect on the earthquake faulting based on the Chester-Higgs model. Acta Seismologica Sinica, 41(1): 13-32. DOI: 10.11939/jass.20170229

Numerical investigation of heating effect on the earthquake faulting based on the Chester-Higgs model

More Information
  • Received Date: December 28, 2017
  • Revised Date: April 23, 2018
  • Available Online: November 18, 2018
  • Published Date: December 31, 2018
  • Rate- and state-dependent friction (RSF) law is an empirical law derived from labo-ratory experiments related to rock friction. RSF law has been used to quantitatively describe complex fault friction processes. Currently, it has emerged as the theoretical basis for the study of seismogenesis and earthquake faulting. With a combination of the Chester-Higgs friction model and the McKenzie-Brune frictional heat generation model, in this study we have investi-gated the effect of frictional heating process on the fault temporal evolution based on a spring-slider-fault system subjected to a rate- and state-dependent friction law. The system equations are solved efficiently by Dormand-Prince method with adaptive steps. The results show that, compared with the case in which the temperature effect is neglected (unheated fault), the rise of temperature caused by frictional heating can lead to a slight time advance of fault instability, accompanied by abrupt decreases of the friction coefficient and state variable, respectively. In the case when the temperature effect is taken into consideration (heated fault), the slip and stress drop on the fault are slightly smaller than that on the unheated fault, while the slip rate becomes larger. In addition, the effective normal stress and critical slip distance can also affect the fault temporal evolution. The greater the effective normal stress on the heated fault is, the earlier the fault instability occurs, accompanied with higher temperature rising. The larger the critical slip distance of the heated fault is, the later the fault instability occurs with a significant temperature increase. However, when the critical slip distance is larger than 5 cm, the peak temperatures are almost the same when the fault is unstable.
  • 陈运泰. 2003. 地震参数: 数字地震学在地震预测中的应用[M]. 北京: 地震出版社: 7–11.
    Chen Y T. 2003. Earthquake Parameters: Application of Digital Seismology in Earthquake Prediction[M]. Beijing: Seismological Press: 7–11 (in Chinese).
    李世愚, 和泰名, 尹祥础. 2015. 岩石断裂力学[M]. 北京: 科学出版社: 1−208.
    Li S Y, He T M, Yin X C. 2015. Fracture Mechanics of Rock[M]. Beijing: Science Press: 1−208.
    姚路,马胜利. 2013. 断层同震滑动的实验模拟:岩石高速摩擦实验的意义、方法与研究进展[J]. 地球物理学进展,28(2):607–623
    Yao L,Ma S L. 2013. Experimental simulation of coseismic fault sliding:Significance,technological methods and research progress of high-velocity frictional experiments[J]. Progress in Geophysics,28(2):607–623 (in Chinese)
    姚路. 2014. 龙门山断裂带断层泥中速-高速摩擦性质的实验研究[J]. 国际地震动态,8:41–42 doi: 10.3969/j.issn.0235-4975.2014.02.010
    Yao L. 2014. Experimental study on mid-high speed tribological properties of fault mud in Longmenshan fault zone[J]. Recent Development in World Seismology,8:41–42 (in Chinese)
    姚路, 马胜利, 嶋本, 利彦. 2016. 利用岩石高速摩擦实验认识地震断层滑动的物理化学过程: 现状与展望[C]//2016中国地球科学联合学术年会论文集(二十五)——专题48: 地震震源物理研究进展、专题49: 利用人工震源探测地下介质结构及其变化. 北京: 中国地球物理学会, 中国地震学会, 全国岩石学与地球动力学研讨会组委会, 中国地质学会构造地质学与地球动力学专业委员会, 中国地质学会区域地质与成矿专业委员会: 1357.
    Yao L, Ma S L, Dao B, Li Y. 2016. Recognition of physicochemical process of seismic fault slip by high speed friction experiment of rocks: Status and prospect[C]// The Paper Collection of 2016 Annual Meeting of Chinese Geoscience Union (Twenty-fifth)-Topic 48: Advances in Seismic Source Physics, Topic 49: Detection of Underground Medium Structure and Change by Artificial Source. Beijing: Chinese Geophysical Society, Seismological Society of China, Organizing Committee of National Symposium on Petrology and Geodynamics, Professional Committee of Tectonic Geology and Geodynamics of the Chinese Geological Society, Regional Geology and Mineralization Committee of the Chinese Geological Society: 1357.
    曾融生. 1984. 固体地球物理学导论[M]. 北京: 科学出版社: 351–363.
    Zeng R S. 1984. Introduction of Solid Geophysics[M]. Beijing: Science Press: 351–363 (in Chinese).
    Ampuero J P,Rubin A M. 2008. Earthquake nucleation on rate and state faults:Aging and slip laws[J]. J Geophys Res,113(B1):B01302
    Barbot S,Lapusta N,Avouac J P. 2012. Under the hood of the earthquake machine:Toward predictive modeling of the seismic cycle[J]. Science,336(6082):707–710 doi: 10.1126/science.1218796
    Beeler N M,Lockner D A. 2003. Why earthquakes correlate weakly with the solid Earth tides:Effects of periodic stress on the rate and probability of earthquake occurrence[J].J Geophys Res,108(B8):2391 doi: 10.1029/2001JB001518
    Bhattacharya P,Rubin A M. 2014. Frictional response to velocity steps and 1-D fault nucleation under a state evolution law with stressing-rate dependence[J]. J Geophys Res,119(3):2272–2304 doi: 10.1002/2013JB010671
    Bizzarri A,Cocco M,Andrews D J,Boschi E. 2001. Solving the dynamic rupture problem with different numerical approaches and constitutive laws[J]. Geophys J Int,144(3):656–678 doi: 10.1046/j.1365-246x.2001.01363.x
    Bizzarri A. 2010. Determination of the Temperature Field due to Frictional Heating on a Sliding Interface[R]. Istituto Nazionale di: 1–16.
    Bizzarri A. 2011. Temperature variations of constitutive parameters can significantly affect the fault dynamics[J]. Earth Planet Sci Lett,306(3/4):272–278
    Blanpied M L,Tullis T E,Weeks J D. 1998. Effects of slip,slip rate,and shear heating on the friction of granite[J]. J Geophys Res,103(B1):489–511 doi: 10.1029/97JB02480
    Byerlee J D. 1970. The mechanics of stick-slip[J]. Tectonophysics,9(5):475–486 doi: 10.1016/0040-1951(70)90059-4
    Byerlee J D. 1978. Friction of rocks[J]. Pure Appl Geophys,116(4):615–626
    Chester F M,Higgs N G. 1992. Multimechanism friction constitutive model for ultrafine quartz gouge at hypocentral conditions[J]. J Geophys Res,97(B2):1859–1870 doi: 10.1029/91JB02349
    Chester F M. 1994. Effects of temperature on friction:Constitutive equations and experiments with quartz gouge[J]. J Geophys Res,99(B4):7247–7261 doi: 10.1029/93JB03110
    Dieterich J H. 1979. Modeling of rock friction:1. Experimental results and constitutive equations[J]. J Geophys Res,84(B5):2161–2168 doi: 10.1029/JB084iB05p02161
    Dieterich J H. 1992. Earthquake nucleation on faults with rate- and state-dependent strength[J]. Tectonophysics,211(1/4):115–134
    Dieterich J H. 1994. A constitutive law for rate of earthquake production and its application to earthquake clustering[J]. J Geophys Res,99(B2):2601–2618 doi: 10.1029/93JB02581
    Gu J C,Rice J R,Ruina A L,Tse S T. 1984. Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction[J]. J Mech Phys Solids,32(3):167–196 doi: 10.1016/0022-5096(84)90007-3
    Gu Y J,Wong T F. 1991. Effects of loading velocity,stiffness,and inertia on the dynamics of a single degree of freedom spring-slider system[J]. J Geophys Res,96(B13):21677–21691 doi: 10.1029/91JB02271
    Hatano T. 2015. Rate and state friction law as derived from atomistic processes at asperities[J/OL]. Geophys J Int [2017−09−21]. https://arxiv.org/pdf/1512.05078.pdf.
    He C R,Wong T F,Beeler N M. 2003. Scaling of stress drop with recurrence interval and loading velocity for laboratory-derived fault strength relations[J]. J Geophys Res,108(B1):2037
    He C R,Luo L,Hao Q M,Zhou Y S. 2013. Velocity-weakening behavior of plagioclase and pyroxene gouges and stabilizing effect of small amounts of quartz under hydrothermal conditions[J]. J Geophys Res,118(7):3408–3430 doi: 10.1002/jgrb.50280
    Kame N,Fujita S,Nakatani M,Kusakabe T. 2013. Effects of a revised rate- and state-dependent friction law on aftershock triggering model[J]. Tectonophysics,600:187–195 doi: 10.1016/j.tecto.2012.11.028
    Kaneko Y,Avouac J P,Lapusta N. 2010. Towards inferring earthquake patterns from geodetic observations of interseismic coupling[J]. Nat Geosci,3(5):363–369 doi: 10.1038/ngeo843
    Kato N. 2001. Effect of frictional heating on pre-seismic sliding:A numerical simulation using a rate-,state- and temperature-dependent friction law[J]. Geophys J Int,147(1):183–188 doi: 10.1046/j.0956-540x.2001.01531.x
    Kimura T. 2009. On dormand-prince method[EB/OL]. [2009−09−24]. http://depa.fquim.unam.mx/amyd/archivero/DormandPrince_19856.pdf.
    King G C P,Cocco M. 2001. Fault interaction by elastic stress changes:New clues from earthquake sequences[J]. Adv Geophys,44:1–38 doi: 10.1016/S0065-2687(00)80006-0
    Lu Z,He C R. 2014. Frictional behavior of simulated biotite fault gouge under hydrothermal conditions[J]. Tectonophysics,622:62–80 doi: 10.1016/j.tecto.2014.03.002
    Marone C. 1998. Laboratory-derived friction laws and their application to seismic faulting[J]. Annu Rev Earth Plant Sci,26:643–696 doi: 10.1146/annurev.earth.26.1.643
    McKenzie D,Brune J N. 1972. Melting on fault planes during large earthquakes[J]. Geophys J Int,29(1):65–78 doi: 10.1111/j.1365-246X.1972.tb06152.x
    Perfettini H,Avouac J P. 2004a. Postseismic relaxation driven by brittle creep:A possible mechanism to reconcile geodetic mea-surements and the decay rate of aftershocks,application to the Chi-Chi earthquake,Taiwan[J]. J Geophys Res,109(B2):B02304
    Perfettini H,Avouac J P. 2004b. Stress transfer and strain rate variations during the seismic cycle[J]. J Geophys Res,109(B6):B06402
    Raleigh C B,Healy J H,Bredehoeft J D. 1976. An experiment in earthquake control at Rangely,Colorado[J]. Science,191(4233):1230–1237 doi: 10.1126/science.191.4233.1230
    Rice J R,Tse S T. 1986. Dynamic motion of a single degree of freedom system following a rate and state dependent friction law[J]. J Geophys Res,91(B1):521–530 doi: 10.1029/JB091iB01p00521
    Rice J R. 2006. Heating and weakening of faults during earthquake slip[J]. J Geophys Res,111:B05311
    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res,88(B12):10359–10370 doi: 10.1029/JB088iB12p10359
    Scholz C H. 1998. Earthquakes and friction laws[J]. Nature,391(6662):37–42 doi: 10.1038/34097
    Scholz C H. 2002. The Mechanics of Earthquakes and Faulting[M]. 2nd ed. New York: Cambridge University Press: 351–412.
    Segall P. 2010. Earthquake and Volcano Deformation[M]. Princeton: Princeton University Press: 332–369.
    Stein R S. 1999. The role of stress transfer in earthquake occurrence[J]. Nature,402(6762):605–609 doi: 10.1038/45144
    Stein S, Wysession M. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure[M]. Malden: Blackwell Publishing: 215–217.
  • Cited by

    Periodical cited type(1)

    1. 罗芳,潘安,陈忠升,张寒. 龙门山断裂带土地利用变化及生态系统服务价值损益评估. 西华师范大学学报(自然科学版). 2021(04): 417-425 .

    Other cited types(3)

Catalog

    Article views (2340) PDF downloads (60) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return