Wu Y Q,Zhang H M. 2018. Determining the threshold value in upper limit of wavenumber integration by reflection-transmission coefficient in theoretical seismograms calculation. Acta Seismologica Sinica40(6):719−727. doi:10.11939/jass.20180013. DOI: 10.11939/jass.20180013
Citation: Wu Y Q,Zhang H M. 2018. Determining the threshold value in upper limit of wavenumber integration by reflection-transmission coefficient in theoretical seismograms calculation. Acta Seismologica Sinica40(6):719−727. doi:10.11939/jass.20180013. DOI: 10.11939/jass.20180013

Determining the threshold value in upper limit of wavenumber integration by reflection-transmission coefficient in theoretical seismograms calculation

More Information
  • Received Date: January 14, 2018
  • Revised Date: July 08, 2018
  • Available Online: November 04, 2018
  • Published Date: October 31, 2018
  • In multi-layered half-space, the displacement field is expressed as the integration of wavenumber k using reflection-transmission (R/T) coefficient when the seismogram is calculated in numerical ways in the frequency domain. Therefore, some special methods were introduced to solve those kinds of integration as to accelerate computation. For example, when the depth of source is equal or close to that of receiver, the peak-trough averaging method (PTAM) is applied. To apply PTAM, however, one must determine the threshold value called kc after which the integration oscillates regularly. In previous studies, kc was estimated empirically without theoretical support. In this study, a scheme based on theoretical analysis to determine kc is proposed, and kc is related to the R/T coefficients. According to the generalized R/T coefficient method, violent variation of integrand will occur when the determinant of relevant R/T coefficient vanishes. We show by examples that for a given frequency, root of the determinant of the reflection coefficient on the free surface is a proper value for kc. Compared with the method calculated with empirical formula, the new method to determine kc will be more efficient for a given precision to prove the validity.
  • 何耀锋,陈蔚天,陈晓非. 2006. 利用广义反射-透射系数方法求解含低速层水平层状介质模型中面波频散曲线问题[J]. 地球物理学报,49(4):1074–1081. doi: 10.3321/j.issn:0001-5733.2006.04.020
    He Y F,Chen W T,Chen X F. 2006. Normal mode computation by the generalized reflection-transmission coefficient method in planar layered half space[J]. Chinese Journal of Geophysics,49(4):1074–1081 (in Chinese).
    张海明,陈晓非,张似洪. 2001. 峰谷平均法及其在计算浅源合成地震图中的应用[J]. 地球物理学报,44(6):805–813. doi: 10.3321/j.issn:0001-5733.2001.06.010
    Zhang H M,Chen X F,Zhang S H. 2001. Peak-trough averaging method and its application to calculation of synthetic seismograms with shallow focuses[J]. Chinese Journal of Geophysics,44(6):805–813 (in Chinese).
    Apsel R J,Luco J E. 1983. On the Green’s functions for a layered half-space. Part II[J]. Bull Seismol Soc Am,73(4):931–951.
    Capdeville Y,Chaljub E,Montagner J P. 2003. Coupling the spectral element method with a modal solution for elastic wave propagation in global earth models[J]. Geophys J Int,152(1):34–67. doi: 10.1046/j.1365-246X.2003.01808.x
    Chen X F. 1993. A systematic and efficient method of computing normal modes for multilayered half-space[J]. Geophys J Int,115(2):391–409. doi: 10.1111/gji.1993.115.issue-2
    Chen X F. 1999. Seismogram synthesis in multi-layered half-space Part I. Theoretical formulations[J]. Earthquake Research in China,13(2):149–174.
    Fuchs K,Müller G. 1971. Computation of synthetic seismograms with the reflectivity method and comparison with observations[J]. Geophys J Int,23(4):417–433. doi: 10.1111/j.1365-246X.1971.tb01834.x
    Graves R W. 1996. Simulating seismic wave propagation in 3D elastic media using staggered-grid finite differences[J]. Bull Seismol Soc Am,86(4):1091–1106.
    Helmberger D V. 1973. On the structure of the low velocity zone[J]. Geophys J Int,34(2):251–263. doi: 10.1111/j.1365-246X.1973.tb02395.x
    Helmberger D V. 1974. Generalized ray theory for shear dislocations[J]. Bull Seismol Soc Am,64(1):45–64.
    Hisada Y. 1994. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths[J]. Bull Seismol Soc Am,84(5):1457–1472.
    Hisada Y. 1995. An efficient method for computing Green’s functions for a layered half-space with sources and receivers at close depths (Part 2)[J]. Bull Seismol Soc Am,85(4):1080–1093.
    Johnson L R. 1974. Green’s function for Lamb’s problem[J]. Geophys J Int,37(1):99–131. doi: 10.1111/j.1365-246X.1974.tb02446.x
    Kennett B L N,Kerry N J. 1979. Seismic waves in a stratified half space[J]. Geophys J Int,57(3):557–583. doi: 10.1111/gji.1979.57.issue-3
    Komatitsch D,Martin R,Tromp J,Taylor M A,Wingate B A. 2001. Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles[J]. J Comput Acoust,9(2):703–718. doi: 10.1142/S0218396X01000796
    Komatitsch D,Tromp J. 2003. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equa-tion[J]. Geophys J Int,154(1):146–153. doi: 10.1046/j.1365-246X.2003.01950.x
    Lamb H. 1904. On the propagation of tremors over the surface of an elastic solid[J]. Philos Trans Roy Soc A,203(359/371):1–42.
    Lapwood E R. 1948. Convection of a fluid in a porous medium[J]. Math Proc Cambridge Philos Soc,44(4):508–521. doi: 10.1017/S030500410002452X
    Levander A R. 1988. Fourth-order finite-difference P-SV seismograms[J]. Geophysics,53(11):1425–1436. doi: 10.1190/1.1442422
    Liu T S,Feng X,Zhang H M. 2016. On Rayleigh wave in half-space:An asymptotic approach to study the Rayleigh function and its relation to the Rayleigh wave[J]. Geophys J Int,206(2):1179–1193. doi: 10.1093/gji/ggw189
    Luco J E,Apsel R J. 1983. On the Green’s functions for a layered half-space. Part I[J]. Bull Seismol Soc Am,73(4):909–929.
    Madariaga R. 1976. Dynamics of an expanding circular fault[J]. Bull Seismol Soc Am,66(3):639–666.
    Pekeris C L. 1955. The seismic surface pulse[J]. Proc Natl Acad Sci USA,41(7):469–480. doi: 10.1073/pnas.41.7.469
    Priolo E, Seriani G. 1991. A numerical investigation of Chebyshev spectral element method for acoustic wave propa-gation[C]//Proceedings of the 13th IMACS World Congress on Computational and Applied Mathematics. Dublin: Criterion Press: 551–556.
    Tromp J,Komattisch D,Liu Q. 2008. Spectral-element and adjoint methods in seismology[J]. Commun Comput Phys,3(1):1–32.
    Yao Z X,Harkrider D G. 1983. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for syn-thetic seismograms[J]. Bull Seismol Soc Am,73(6A):1685–1699.
    Zhang H M,Chen X F. 2001. Self-adaptive filon’s integration method and its application to computing synthetic seismograms[J]. Chinese Phys Lett,18(3):313–315. doi: 10.1088/0256-307X/18/3/301
    Zhang H M,Chen X F,Chang S. 2003. An efficient numerical method for computing synthetic seismograms for a layered half-space with sources and receivers at close or same depths[J]. Pure Appl Geophys,160(3/4):467–486.
    Zhang W,Chen X F. 2006. Traction image method for irregular free surface boundaries in finite difference seismic wave simul-ation[J]. Geophys J Int,167(1):337–353. doi: 10.1111/gji.2006.167.issue-1
  • Cited by

    Periodical cited type(1)

    1. 李祥秀,范世凯,李小军,刘爱文. 场地地震动特征周期对高层建筑结构工程材料用量和破坏状态影响的研究. 地震科学进展. 2024(08): 497-505 .

    Other cited types(0)

Catalog

    Article views (1711) PDF downloads (51) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return