Wang M F,Zheng A,Yu X W,Zhang W B. 2018. Study on the influence of local mountainous topography to fault dynamic rupture. Acta Seismologica Sinica40(6):737−752. doi:10.11939/jass.20180022. DOI: 10.11939/jass.20180022
Citation: Wang M F,Zheng A,Yu X W,Zhang W B. 2018. Study on the influence of local mountainous topography to fault dynamic rupture. Acta Seismologica Sinica40(6):737−752. doi:10.11939/jass.20180022. DOI: 10.11939/jass.20180022

Study on the influence of local mountainous topography to fault dynamic rupture

More Information
  • Received Date: February 08, 2018
  • Revised Date: April 06, 2018
  • Available Online: November 08, 2018
  • Published Date: October 31, 2018
  • In this study, the curved grid finite-difference method was implemented to investigate the effect of local irregular topography on the dynamic rupture process of a vertical strike-slip fault and the resultant strong ground motions. The rupture propagation and ground motions were simulated with different irregular topography in a three-dimensional homogeneous half-space. Our results show that the scale of ridge topography including its height and bottom extension size has great impact on the dynamic rupture process, and then will affect the distribution of ground motions. The mountainous topography will obstruct the generation of super-shear induced by free surface when it is located near the subshear-to-supershear transition position on free surface. Generally, for the faults with a certain buried depth, with the same size of topography bottom extension, the higher the mountain height is, the stronger prevention it has on the generation of super-shear. In addition, when the mountain height is fixed, the larger extension of mountain bottom size has more obstacles to the generation of the super-shear induced by free surface. The variation of fault rupture process will make different distribution of ground motions. Furthermore, the response of dynamic rupture process and the corresponding ground motion to the change of initial shear stress outside the nucleation area was discussed. Our result shows that with the high initial shear stress, the super-shear induced by high stress drop also plays an important role in dynamic rupture and distribution of the resultant ground motion.
  • 胡进军. 2009. 近断层地震动方向性效应及超剪切破裂研究[D]. 哈尔滨: 中国地震局工程力学研究所: 178.
    Hu J J. 2009. Directivity Effect of Near-Fault Ground Motion and Super-Shear Rupture[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 178 (in Chinese).
    王铭锋,郑傲,章文波. 2017. 局部山体地形对强地面运动的影响研究[J]. 地球物理学报,60(12):4655–4670. doi: 10.6038/cjg20171210
    Wang M F,Zheng A,Zhang W B. 2017. Effect of local mountain topography on strong ground motion[J]. Chinese Journal Geophysics,60(12):4655–4670 (in Chinese).
    张伟. 2006. 含起伏地形的三维非均匀介质中地震波传播的有限差分算法及其在强地面震动模拟中的应用[D]. 北京: 北京大学: 7–109.
    Zhang W. 2006. Finite Difference Seismic Wave Modelling in 3D Heterogeneous Media With Surface Topography and Its Implementation in Strong Ground Motion Study[D]. Beijing: Peking University: 7–109 (in Chinese).
    Andrews D J. 1976a. Rupture propagation with finite stress in antiplane strain[J]. J Geophys Res,81(20):3575–3582. doi: 10.1029/JB081i020p03575
    Andrews D J. 1976b. Rupture velocity of plane strain shear cracks[J]. J Geophys Res,81(32):5679–5687. doi: 10.1029/JB081i032p05679
    Aochi H,Ide S. 2014. Ground motions characterized by a multi-scale heterogeneous earthquake model[J]. Earth Planets Space,66:42.
    Burridge R. 1973. Admissible speeds for plane-strain self-similar shearcracks with friction but lacking cohesion[J]. J Geophys Res,35(4):439–455.
    Das S,Aki K. 1977. A numerical study of two-dimensional spontaneous rupture propagation[J]. Geophys J Rastr Soc,50(3):643–668. doi: 10.1111/j.1365-246X.1977.tb01339.x
    Day S M,Dalguer L A,Lapusta N,Liu Y. 2005. Comparison of finite difference and boundary integral solutions to three-dimensional spontaneous rupture[J]. J Geophys Res,110(B12):B12307. doi: 10.1029/2005JB003813
    Dieterich J H. 1972. Time-dependent friction in rocks[J]. J Geophys Res,77(20):3690–3697. doi: 10.1029/JB077i020p03690
    Dieterich J H. 1978. Preseismic fault slip and earthquake prediction[J]. J Geophys Res,83(B8):3940–3948. doi: 10.1029/JB083iB08p03940
    Duan B C,Oglesby D D. 2007. Nonuniform prestress from prior earthquakes and the effect on dynamics of branched fault systems[J]. J Geophys Res,112(B5):B05308.
    Dunham E M. 2007. Conditions governing the occurrence of supershear ruptures under slip-weakening friction[J]. J Geophys Res,112(B7):B07302.
    Ely G P,Day S M,Minster J B. 2010. Dynamic rupture models for the southern San Andreas fault[J]. Bull Seismol Soc Am,100(1):131–150. doi: 10.1785/0120090187
    Frankel A. 2004. Rupture process of the M7.9 Denali fault,Alaska,earthquake:Subevents,directivity,and scaling of high-frequency ground motions[J]. Bull Seismol Soc Am,94(6B):S234–S255. doi: 10.1785/0120040612
    Harris R A,Archuleta R J,Day S M. 1991. Fault steps and the dynamic rupture process:2-D numerical simulations of a spontaneously propagating shear fracture[J]. Geophys Res Lett,18(5):893–896. doi: 10.1029/91GL01061
    Huang H Q,Zhang Z G,Chen X F. 2018. Investigation of topographical effects on rupture dynamics and resultant ground motions[J]. Geophys J Int,212(1):311–323. doi: 10.1093/gji/ggx425
    Ida Y. 1972. Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy[J]. J Geophys Res,77(20):3796–3805. doi: 10.1029/JB077i020p03796
    Kaneko Y,Lapusta N. 2010. Supershear transition due to a free surface in 3-D simulations of spontaneous dynamic rupture on vertical strike-slip faults[J]. Tectonophysics,493(3/4):272–284.
    Langer S,Olsen-Kettle L,Weatherley D. 2012. Identification of supershear transition mechanisms due to material contrast at bimaterial faults[J]. Geophys J Int,190(2):1169–1180. doi: 10.1111/gji.2012.190.issue-2
    Lozos J C,Oglesby D D,Brune J N. 2013. The effects of fault stepovers on ground motion[J]. Bull Seismol Soc Am,103(3):1922–1934. doi: 10.1785/0120120223
    Madariaga R. 1976. Dynamics of an expanding circular fault[J]. Bull Seismol Soc Am,66(3):639–666.
    Madariaga R,Olsen K B,Archuleta R J. 1998. Modeling dynamic rupture in a 3D earthquake fault model[J]. Bull Seismol Soc Am,88(5):1182–1197.
    Oglesby D D. 2008. Rupture termination and jump on parallel offset faults[J]. Bull Seismol Soc Am,98(1):440–447. doi: 10.1785/0120070163
    Oglesby D D,Day S M. 2001. Fault geometry and the dynamics of the 1999 Chi-Chi (Taiwan) earthquake[J]. Bull Seismol Soc Am,91(5):1099–1111.
    Oglesby D D,Archuleta R J. 2003. The three-dimensional dynamics of a nonplanar thrust fault[J]. Bull Seismol Soc Am,93(5):2222–2235. doi: 10.1785/0120020204
    Ruina A. 1983. Slip instability and state variable friction laws[J]. J Geophys Res,88(B12):10359–10370. doi: 10.1029/JB088iB12p10359
    Scholz C,Molnar P,Johnson T. 1972. Detailed studies of frictional sliding of granite and implications for the earthquake mechanism[J]. J Geophys Res,77(32):6392–6406. doi: 10.1029/JB077i032p06392
    Wen Y Y,Oglesby D D,Duan B C,Ma K F. 2012. Dynamic rupture simulation of the 2008 MW7.9 Wenchuan earthquake with heterogeneous initial stress[J]. Bull Seismol Soc Am,102(4):1892–1898. doi: 10.1785/0120110153
    Yamashita T. 1976. On the dynamical process of fault motion in the presence of friction and inhomogeneous initial stress partⅠ : Rupture propagation[J]. J Phys Earth,24:417–444. doi: 10.4294/jpe1952.24.417
    Zhang H M,Chen X F. 2006a. Dynamic rupture on a planar fault in three-dimensional half-space:Ⅱ . Validations and numerical experiments[J]. Geophys J Int,167(2):917–932. doi: 10.1111/gji.2006.167.issue-2
    Zhang W,Chen X F. 2006b. Traction image method for irregular free surface boundaries in finite difference seismic wave simulation[J]. Geophys J Int,167(1):337–353. doi: 10.1111/gji.2006.167.issue-1
    Zhang W B,Iwata T,Irikura K. 2006. Dynamic simulation of a dipping fault using a three-dimensional finite difference method with nonuniform grid spacing[J]. J Geophys Res,111(B5):B05301.
    Zhang W,Zhang Z G,Chen X F. 2012. Three-dimensional elastic wave numerical modelling in the presence of surface topography by a collocated-grid finite-difference method on curvilinear grids[J]. Geophys J Int,190(1):358–378. doi: 10.1111/gji.2012.190.issue-1
    Zhang Z G,Zhang W,Chen X F. 2014. Three-dimensional curved grid finite-difference modelling for non-planar rupture dynamics[J]. Geophys J Int,199(2):860–879. doi: 10.1093/gji/ggu308
  • Related Articles

Catalog

    Article views (1311) PDF downloads (69) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return