Yang X L,Wang J,Wang X B,Wang X,Dou M L,Wei Z G. 2018. What causes the remarkable tilt anomalies at the Hancheng geodynamic observatory in Shaanxi Province? Acta Seismologica Sinica40(6):760−773. doi:10.11939/jass.20180025. DOI: 10.11939/jass.20180025
Citation: Yang X L,Wang J,Wang X B,Wang X,Dou M L,Wei Z G. 2018. What causes the remarkable tilt anomalies at the Hancheng geodynamic observatory in Shaanxi Province? Acta Seismologica Sinica40(6):760−773. doi:10.11939/jass.20180025. DOI: 10.11939/jass.20180025

What causes the remarkable tilt anomalies at the Hancheng geodynamic observatory in Shaanxi Province?

More Information
  • Received Date: February 23, 2018
  • Revised Date: April 18, 2018
  • Available Online: August 19, 2018
  • Published Date: October 31, 2018
  • The remarkable tilt anomalies could be the earthquake precursors, but may also be caused by instrumental factors and environmental disturbances. Thus, the question arises on how to distinguish the earthquake precursors from the non-tectonic factors, which is very important to effectively and reasonably detect earthquake precursors. Since 2010, two remarkable tilt anomalies have been recorded by metallic horizontal pendulums in E-W component at the Hancheng observatory in Shannxi Province, and the amount of east- and west-ward tilt approxi-mately reach up to 140″ and 180″, respectively, but these two remarkable tilt anomalies have not been reasonably and clearly interpreted till now. Here, we propose and compare three different causal mechanisms possibly responsible for these anomalous phenomena according to the regional hydrological, tectonic and seismicity characteristics, i.e. ① hydrodynamics-induced surface tilt, ② a long-term slow slip event on the northeastern segment of the Hancheng fault, and ③ variations of the regional tectonic stress field during the anomalous period. We then theoretically calculated the poroelastic deformation and the fault slip amount, and finally inversed the focal mechanism solutions of 85 earthquakes (2.0≤ML≤4.8) that occurred between 2008 and 2015 with the aim of determining the regional stress field changes (35°N—36°N, 110°E—111°E) in the crust. Our results show that the first possibility can be shown unlikely, but it is difficult to rule out the second and the third possibility according to the current eviden-ce. To further prove and confirm the causal relationship between deformation of tectonic origin and the anomalies, more comprehensive tilt and crustal deformation measurements are necessary in the Hancheng region in the future, furthermore, more intensive researches are also needed to reveal and determine the causal mechanisms of these anomalies. Unfortunately, we fail to find the real causal mechanism, but the approaches used in this study could be helpful to investigate the causal origin of remarkable anomalies recorded by tiltmeters in the near future.
  • 薄万举. 2010. 形变异常与干扰关系的再认识[J]. 大地测量与地球动力学,30(1):5–8.
    Bo W J. 2010. Study on relation between crustal deformation anomaly and disturbances[J]. Journal of Geodesy and Geodyna-mics,30(1):5–8 (in Chinese).
    高伯贤,高雪. 2011. 韩城矿区南部奥陶系灰岩岩溶水特征[J]. 陕西煤炭,30(1):43–45.
    Gao B X,Gao X. 2011. Characteristics of Ordovician limestone karst water in southern Hancheng mining area[J]. Shaanxi Coal,30(1):43–45 (in Chinese).
    郭平战. 2015. 韩城矿区岩溶形成机理及其水文地质特征[J]. 地下水,37(5):54–57.
    Guo P Z. 2015. Karst formation mechanism of karst in Hancheng mining area and its hydrogeological characteristics[J]. Ground Water,37(5):54–57 (in Chinese).
    何毅. 2012. 近60年来渭河流域气候变化研究[D]. 杨凌: 西北农林科技大学: 16–37.
    He Y. 2012. Climate Change of Wei River Basin in Last 60 Years[D]. Yangling: Northwest A&F University: 16–37 (in Chinese).
    黄辅琼,陈颙,白长清,张晶,晏锐,杨明波,兰从欣,张晓东,江在森. 2005. 八宝山断层的变形行为与降雨及地下水的关系[J]. 地震学报,27(6):637–646.
    Huang F Q,Chen Y,Bai C Q,Zhang J,Yan R,Yang M B,Lan C X,Zhang X D,Jiang Z S. 2005. The correlation of deformation behavior with precipitation and groundwater of the Babaoshan fault in Beijing[J]. Acta Seisomogical Sinica,27(6):637–646 (in Chinese).
    扈桂让,李自红,闫小兵,赵晋泉,曾金艳,郭瑾. 2017. 韩城断裂晚第四纪活动性研究[J]. 地震地质,39(1):206–217.
    Hu G R,Li Z H,Yan X B,Zhao J Q,Zeng J Y,Guo J. 2017. The study of Late Quaternary activity of Hancheng fault[J]. Seismology and Geology,39(1):206–217 (in Chinese).
    陆一锋,徐鸣洁,王良书,米宁,李华,于大勇. 2012. 鄂尔多斯东南缘地区的地壳结构[J]. 科学通报,57(1):59–64.
    Lu Y F,Xu M J,Wang L S,Mi N,Li H,Yu D Y. 2011. Crustal structure of the southeastern margin of the Ordos block[J]. Chinese Science Bulletin,56(35):3854–3859. doi: 10.1007/s11434-011-4847-7
    牛安福,顾国华,曹景鹏,张凌空,闫伟,赵静,吉平. 2013. 芦山MS7.0地震前远、近场形变时空演化特征研究[J]. 地震学报,35(5):670–680.
    Niu A F,Gu G H,Cao J P,Zhang L K,Yan W,Zhao J,Ji P. 2013. On the preseismic deformation changes prior to the Lushan MS7.0 earthquake[J]. Acta Seismologica Sinica,35(5):670–680 (in Chinese).
    水利部黄河水利委员会. 2017. 水情信息[EB/OL]. [2018–01–21]. http://61.163.88.227:8006/hwsq.aspx.
    Yellow River Conservancy Commission of the Ministry of Water Resources. 2017. The information of water[EB/OL]. [2018–01–21]. http://61.163.88.227:8006/hwsq.aspx (in Chinese).
    吴富春,张鸿福,景北科,段锋,张义民. 1999. 陕西几例特殊的无震异常及其成因分析[J]. 西北地震学报,21(3):268–273.
    Wu F C,Zhang H F,Jing B K,Duan F,Zhang Y M. 1999. Study on some special aseismic precursory anomalies observed from Shaanxi seismic network and their causes[J]. Northwestern Seismological Journal,21(3):268–273 (in Chinese).
    田中豊. 1972. 地殼変動連続観測(長期変動と地震前駆変動)[C]//地震予知研究シンポジウム. 东京: 东京大学出版社: 35–44.
    Tanaka Y. 1972. Long-term crustal deformation and precursory variation in seismicity[C]//Proceedings of the Earthquake Prediction Research Symposium 1972. Tokyo: University of Tokyo Press: 35–44 (in Japanese).
    里嘉千茂. 1989. 伝播性歪に関する数値実験[J]. 測地学会誌,35(1):27–36.
    Sato K. 1989. Numerical experiments on strain migration[J]. Journal of the Geodetic Society of Japan,35(1):27–36 (in Japanese).
    内藤宏人,吉川澄夫. 1999. 地殻変動解析支援プログラムMICAP-Gの開発[J]. 地震,52(1):101–103.
    Naito H,Yoshikawa S. 1999. A program to assist crustal deformation analysis[J]. Journal of the Geodetic Society of Japan,52(1):101–103 (in Japanese).
    竹本修三, 和田安男, 伊藤潔, 福田洋一, 森井亙, 百瀬秀夫, 中村光邦. 2004. 地殻ひずみの観測に及ぼす局所的日照変化の影響—花山と立山観測室のデータ比較[R].京都大学防災研究所年報, 47(B): 725–734.
    Takemoto S, Wada Y, Ito K, Fukuda Y, Morii W, Momose H, Nakamura M. 2004. Effect of local sunshine changes upon crustal strain observations: Comparison of strain data obtained at Kwasan and Tateyama stations[R]. Disaster Prevention Research Institute Annuals, Kyoto University, 47(B): 725–734 (in Japanese).
    Agnew D C. 1986. Strainmeters and tiltmeters[J]. Rev Geophys,24(3):579–624. doi: 10.1029/RG024i003p00579
    Bilham R G,Beavan R J. 1979. Strains and tilts on crustal blocks[J]. Tectonophysics,52(1/2/3/4):121–138. doi: 10.1016/0040-1951(79)90216-6
    Braitenberg C,Nagy I. 2014. Illustrating the superposition of signals recorded by the Grotta Gigante pendulums with musical analogues[J]. Acta Carsol,43(1):139–147.
    Brimich L,Bednárik M,Bezák V,Kohút I,Bán D,Eper-Pápai I,Mentes G. 2016. Extensometric observation of Earth tides and local tectonic processes at the Vyhne station,Slovakia[J]. Contrib Geophys Geod,46(2):75–90. doi: 10.1515/congeo-2016-0006
    Bykov V G,Trofimenko S V. 2016. Slow strain waves in blocky geological media from GPS and seismological observations on the Amurian plate[J]. Nonlin Process Geophys,23(6):467–475. doi: 10.5194/npg-23-467-2016
    Caniven Y,Dominguez S,Soliva R,Peyret M,Cattin R,Maerten F. 2017. Relationships between along-fault heterogeneous normal stress and fault slip patterns during the seismic cycle:Insights from a strike-slip fault laboratory model[J]. Earth Planet Sci Lett,480:147–157. doi: 10.1016/j.jpgl.2017.10.009
    Cicerone R D,Ebel J E,Britton J. 2009. A systematic compilation of earthquake precursors[J]. Tectonophysics,476(3/4):371–396.
    Detournay E, Cheng A H D. 1993. Fundamental of Poroelasticity in Comprehensive Rock Engineering: Principles, Practice & Projects, Vol.2[M]. Oxford: Pergamon Press: 127–128.
    Dragoni M,Bonafede M,Boschi E. 1984. On the interpretation of slow ground deformation precursory to the 1976 Friuli earthquake[J]. Pure Appl Geophys,122(6):781–792.
    Eper-Pápai I,Mentes G,Kis M,Koppán A. 2014. Comparison of two extensometric stations in Hungary[J]. J Geodyn,80:3–11. doi: 10.1016/j.jog.2014.02.007
    Evans K,Wyatt F. 1984. Water table effects on the measurement of earth strain[J]. Tectonophysics,108(3/4):323–337.
    Fréchet J,Rivera L. 2012. Horizontal pendulum development and the legacy of Ernst von Rebeur-Paschwitz[J]. J Seismol,16(2):315–343. doi: 10.1007/s10950-011-9272-5
    Fukuyama E. 2015. Dynamic faulting on a conjugate fault system detected by near-fault tilt measurements[J]. Earth Planets Space,67:38. doi: 10.1186/s40623-015-0207-1
    Gershenzon N I,Bykov V G,Bambakidis G. 2009. Strain waves,earthquakes,slow earthquakes,and afterslip in the framework of the Frenkel-Kontorova model[J]. Phys Rev E,79(5):056601. doi: 10.1103/PhysRevE.79.056601
    Goulty N R. 1976. Strainmeters and tiltmeters in geophysics[J]. Tectonophysics,34(3):245–256.
    Hao M,Wang Q L,Cui D X,Liu L W,Zhou L. 2016. Present-day crustal vertical motion around the Ordos block constrained by precise leveling and GPS data[J]. Surv Geophys,37(5):923–936. doi: 10.1007/s10712-016-9375-1
    Harada M,Furuzawa T,Teraishi M,Ohya F. 2003. Temporal and spatial correlations of the strain field in tectonic active region,southern Kyusyu,Japan[J]. J Geodyn,35:471–481. doi: 10.1016/S0264-3707(03)00008-5
    Hardebeck J L,Shearer P M. 2002. A new method for determining first-motion focal mechanisms[J]. Bull Seismol Soc Am,92(6):2264–2276. doi: 10.1785/0120010200
    Harrison J C,Herbst K. 1977. Thermoelastic strains and tilts revised[J]. Geophys Res Lett,4(11):535–537. doi: 10.1029/GL004i011p00535
    Hisz D B,Murdoch L C,Germanovich L N. 2013. A portable borehole extensometer and tiltmeter for characterizing aquifers[J]. Water Resour Res,49(12):7900–7910. doi: 10.1002/wrcr.20500
    Huang N E,Shen Z,Long S R,Wu M C,Shih H H,Zheng Q,Yen N C,Tung C C,Liu H H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc Roy Soc A Math Phys Eng Sci,454(1971):903–995. doi: 10.1098/rspa.1998.0193
    Ishii H,Sato T,Takagi A. 1980. Characteristics of strain migration in the northeastern Japan Arc (II):Amplitude characteris-tics[J]. J Geod Soc Japan,26(1):17–25.
    Jahr T,Jentzsch G,Gebauer A,Lau T. 2008. Deformation,seismicity,and fluids:Results of the 2004/2005 water injection experiment at the KTB/Germany[J]. J Geophys Res,113(B11):B11410. doi: 10.1029/2008JB005610
    Kartvelishvili K Z. 2010. Investigation of deformational processes in Tbilisi underground earth-tidal laboratory[J]. J Georgian Geophys Soc,Phys Atmos,Ocean and Space Plasma,14(B):197–201.
    Kawai K,Sekine S,Fuji N R,Geller R J. 2009. Waveform inversion for D″ structure beneath northern Asia using Hi-net tiltmeter data[J]. Geophys Res Lett,36(20):L20314. doi: 10.1029/2009GL039651
    Kimura T,Obara K,Kimura H,Hirose H. 2011. Automated detection of slow slip events within the Nankai subduction zone[J]. Geophys Res Lett,38(1):L01311. doi: 10.1029/2010GL045899
    Linde A T,Gladwin M T,Johnston M J S,Gwyther R L,Bilham R G. 1996. A slow earthquake sequence on the San Andreas fault[J]. Nature,383(6595):65–68. doi: 10.1038/383065a0
    Lindsey E O,FialkoY,Bock Y,Sandwell D T,Bilham R. 2014. Localized and distributed creep along the southern San Andreas fault[J]. J Geophys Res,119(10):7909–7922. doi: 10.1002/2014JB011275
    Martínez-Garzón P,Kwiatek G,Ickrath M,Bohnhoff M. 2013. MSATSI:A MATLAB package for stress inversion combining solid classic methodology,a new simplified user-handling and a visualization tool[J]. Seismol Res Lett,85(4):896–904.
    Mentes G. 2008. Observation of recent tectonic movements by extensometers in the Pannonian Basin[J]. J Geodyn,45(4/5):169–177.
    Mentes G. 2017. The role of recent tectonics and hydrological processes in the evolution of recurring landslides on the Danube’s high bank in Dunaföldvár,Hungary[J]. J Geodyn,290:200–210.
    Michelson A A. 1914. Preliminary results of measurements of the rigidity of the earth[J]. Astrophys J,39:105–138. doi: 10.1086/142058
    NOAA. 2017. Climate data online[EB/OL]. [2017−10−12]. https://www.ncdc.noaa.gov/cdo-web/.
    Okada Y. 1985. Surface deformation due to shear and tensile faults in a half-space[J]. Bull Seismol Soc Am,74(5):1135–1154.
    Rikitake T. 1987. Earthquake precursors in Japan:Precursor time and detectability[J]. Tectonophysics,136(3/4):265–282.
    Rikitake T. 1988. Earthquake prediction:An empirical approach[J]. Tectonophysics,148(3/4):195–210.
    Schuite J,Longuevergne L,Bour O,Burbey T J,Boudin F,Lavenant N,Davy P. 2017. Understanding the hydromechanical behavior of a fault zone from transient surface tilt and fluid pressure observations at hourly time scales[J]. Water Resour Res,53(12):10558–10582. doi: 10.1002/2017WR020588
    Sgrigna V,D'ambrosio C,Yanovskaya T B. 2002. Numerical modeling of preseismic slow movements of crustal blocks caused by quasi-horizontal tectonic forces[J]. Phys Earth Planet Int,129(3/4):313–324.
    Stein R S,Barka A A,Dieterich J H. 1997. Progressive failure on the North Anatolian fault since 1939 by earthquake stress trig-gering[J]. Geophys J Int,128(3):594–604. doi: 10.1111/gji.1997.128.issue-3
    Takemoto S. 1991. Some problems on detection of earthquake precursors by means of continuous monitoring of crustal strains and tilts[J]. J Geophys Res,96(B6):10377–10390. doi: 10.1029/91JB00239
    Timofeev V Y,Ardyukov D G,Boyko E V,Gribanova E I,Semibalamut V M,Timofeev A V,Yaroshevich A V. 2012. Strain and displacement rates during a large earthquake in the South Baikal region[J]. Russ Geol Geophys,53(8):798–816. doi: 10.1016/j.rgg.2012.06.007
    Timofeev V Y,Masalsky O K,Ardyukov D G,Timofeev A V. 2015. Local deformation and rheological parameters by measurements in Talaya station gallery (Baikal region)[J]. Geodyn Tectonophys,6(2):241–253. doi: 10.5800/GT-2015-6-2-0179
    Tsai V C. 2011. A model for seasonal changes in GPS positions and seismic wave speeds due to thermoelastic and hydrologic variations[J]. J Geophys Res,116(B4):B04404. doi: 10.1029/2010JB008156
    Wang H F. 2000. Theory of Linear Poroelasticity[M]. Princeton: Princeton University Press: 265–266.
    Yamazaki K. 2013. An attempt to correct strain data measured with vault-housed extensometers under variations in temperature[J]. Tectonophysics,599:89–96. doi: 10.1016/j.tecto.2013.04.001
    Zadro M,Braitenberg C. 1999. Measurements and interpretations of tilt-strain gauges in seismically active areas[J]. Earth Sci Rev,47(3):151–187.
  • Cited by

    Periodical cited type(17)

    1. 朱杰,钟玉盛. 云南地震预警站网监测效能评估. 地震研究. 2025(03): 422-431 .
    2. 唐浩,李学波,徐金银,何秋菊,胡子琪. 预警项目建成前后宁夏台网地震监测能力评估对比. 地震科学进展. 2025(06): 331-339 .
    3. 刘甜甜,安全,王鑫. 内蒙古东部地区地震监测与预警能力分析. 地震科学进展. 2025(06): 322-330+339 .
    4. 李旭茂,邹立晔,张滨,张琪,张莹莹,梁姗姗. 2024年新疆乌什M_S 7.1地震数据产品及其分析. 地震地磁观测与研究. 2024(02): 1-10 .
    5. 赵晓成,马鑫,丁新娟,乌尼尔,阿布都热依木江·巴克,迟正阳,张志斌. 新疆地震烈度速报与预警系统产出效能分析——以乌什7.1级地震为例. 内陆地震. 2024(02): 128-134 .
    6. 董腾超,殷海涛,苗庆杰,魏红谱,张春鹏,李国一. 山东地震台网监测预警能力评估分析. 中国地震. 2024(02): 410-425 .
    7. 任芳语,陈俊杰,郭炎,张帆,付琦,张璇,贺奇. 吉林省地震预警台网监测能力及时效性评估. 地震地磁观测与研究. 2024(03): 174-180 .
    8. 游秀珍,林彬华,李军,韦永祥,王士成,李水龙,丁炳火. 福建地震预警台网观测数据质量评估. 地球物理学进展. 2024(04): 1330-1342 .
    9. 郭攀,李子昊,王晓睿,田雨佳. 基于SN-CAST方法的辽宁预警站网监测能力评估. 防灾减灾学报. 2024(03): 53-58 .
    10. 杨源鸿,林彬华,李军,陈惠芳,丁炳火,陈辉,林玮瑾. 福建地震台网地震定位精度评估. 大地测量与地球动力学. 2024(10): 1095-1100 .
    11. 熊成,梁明,洪玉清,张严心,叶世山,曾晓燕,汤曜玮,钱银苹. 广东省地震台网地震监测与预警能力评估. 华南地震. 2024(03): 127-136 .
    12. 怀奕迅,王振南,徐翔,刘洋君. 湖南地震预警站网监测预警与烈度速报能力分析. 华南地震. 2024(03): 153-161 .
    13. 刘炜,梁艳,吕飞亚,李晨. 山西预警台网监测能力及预警能力研究. 山西地震. 2024(03): 1-8 .
    14. 金昭娣,张媛媛,关昕,林卓. 陕西省区域地震预警能力评估. 地震地磁观测与研究. 2024(06): 183-192 .
    15. 朱峰,杨驰,何奕成,孙小航. 江苏省测震台网地震预警能力评估. 地震地磁观测与研究. 2023(05): 52-58 .
    16. 魏斌,张志斌,乌尼尔,赵晓成,丁新娟. 新疆地震预警与烈度速报系统建设及效能评估. 内陆地震. 2023(04): 313-323 .
    17. 张羽,魏美璇,贺琦,刘冰扬,李一宏,任芳语. 吉林省地震监测能力风险评估技术. 地震地磁观测与研究. 2023(S1): 140-143 .

    Other cited types(3)

Catalog

    Article views (1943) PDF downloads (110) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return