Citation: | Li Zongchao, Gao Mengtan, Chen Xueliang, Wu Qing. 2019: Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016. Acta Seismologica Sinica, 41(1): 100-110. DOI: 10.11939/jass.20180070 |
李宗超,陈学良,高孟潭,王建龙,鄢兆伦,李铁飞. 2016. 经验格林函数方法模拟强地面运动的研究进展[J]. 世界地震工程,32(2):209–216
|
Li Z C,Chen X L,Gao M T,Wang J L,Yan Z L,Li T F. 2016. Research progress of empirical Green function method simulation strong ground motion[J]. World Earthquake Engineering,32(2):209–216 (in Chinese)
|
李宗超. 2017. 大震近场地震动数值模拟不确定性研究[D]. 北京: 中国地震局地球物理研究所: 1–126.
|
Li Z C. 2017. The Uncertainty Factors Research of Near-Field Ground Motion Numerical Simulation[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1–126 (in Chinese).
|
王秀英,聂高众,张玲. 2010. 汶川地震触发崩滑与Arias强度关系研究[J]. 应用基础与工程科学学报,18(4):645–656 doi: 10.3969/j.issn.1005-0930.2010.04.012
|
Wang X Y,Nie G Z,Zhang L. 2010. Relationship between landslides induced by the Wenchuan earthquake and Arias intensity[J]. Journal of Basic Science and Engineering,18(4):645–656 (in Chinese)
|
李启成. 2010. 经验格林函数方法模拟地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所: 1–119.
|
Li Q C. 2010. Research on Ground Motion Simulation with Empirical Green Function Method[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–119 (in Chinese).
|
王海云. 2004. 近场强地震动预测的有限断层震源模型[D]. 哈尔滨: 中国地震局工程力学研究所: 1–135.
|
Wang H Y. 2004. Finite Fault Source Model for Predicating Near-Field Strong Ground Motion [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–135 (in Chinese).
|
Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge: MIT Press: 438–483.
|
Dai Z J,Li X J,Hou C L. 2014. An optimization method for the generation of ground motions compatible with multi-damping design spectra[J]. Soil Dynamics and Earthquake Engineering,66:199–205 doi: 10.1016/j.soildyn.2014.06.032
|
Dan K, Watanabe T, Tanaka T.1989. A semi-empirical method to synthesize earthquake ground motions based on approximate far-field shear-wave displacement[G]//Journal of Structural and Construction Engineering (Transactions of AIJ). Tokyo:Structural and Construction Engineering: 27−36.
|
Del Gaudio V,Wasowski J. 2004. Time probabilistic evaluation of seismically induced landslide hazard in Irpinia (Southern Italy)[J].Soil Dyn Earthq Eng,24(12):915–928 doi: 10.1016/j.soildyn.2004.06.019
|
Disaster Prevention Research Institute, Kyoto University. 2016. Kumamoto earthquake[EB/OL]. [2017−12−18]. http://www.dpri.kyoto-u.ac.jp/disaster_report/#6806.
|
Irikura K. 1983. Semi-empirical estimation of strong ground motion during large earthquake[J]. Bull Disas Prev Res,33:151–156
|
Irikura K. 1986. Prediction of strong acceleration motion using empirical Green’s function[C]//Proceedings of the 7th Japan Earthquake Engineering Symposium.Tokyo: Architectural Institute of Japan: 151−156.
|
Irikura K,Kamae K. 1994. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique[J]. Ann Geophys,37(6):1721–1743
|
Irikura K,Miyake H. 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios[J]. Pure Appl Geophys,168(1/2):85–104
|
Irikura K,Miyakoshi K,Kamae K,Yoshida K,Somei K,Kurahashi S,Miyake H. 2017. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake[J]. Earth Planets Space,69:10 doi: 10.1186/s40623-016-0586-y
|
Kanamori H. 1979. A semi-empirical approach to prediction of long-period ground motions from great earthquake[J]. Bull Seismol Soc Am,69(6):1654–1670
|
Li Z C,Chen X L,Gao M T,Jiang H,Li T F. 2017. Simulating and analyzing engineering parameters of Kyushu Earthquake,Japan,1997,by empirical Green function method[J]. J Seismol,21(2):367–384 doi: 10.1007/s10950-016-9606-4
|
Li Z C,Gao M T,Jiang H,Chen X L,Li T F,Zhao X F. 2018. Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion[J]. Acta Geophys,66(4):523–540 doi: 10.1007/s11600-018-0171-9
|
Miyake H,Iwata T,Irikura K. 2003. Source characterization for broadband ground-motion simulation:Kinematic heterogeneous source model and strong motion generation area[J]. Bull Seismol Soc Am,93(6):2531–2545 doi: 10.1785/0120020183
|
National Research Institute for Earth Science and Disaster Resilience. 2016. Strong-motion seismograph networks (K-NET, KIK-NET)[EB/OL]. [2017−12−18]. http://www.kyoshin.bosai.go.jp/kyoshin/data/index_en.html.
|
Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80 doi: 10.1785/gssrl.70.1.59
|
1. |
李宗超,纪志伟,孙吉泽,陈鲲,谢俊举. 基于安徽合肥M_S4.7地震快速估计本地区M_S6.0设定地震加速度时程及其破坏能力. 地球与行星物理论评(中英文). 2025(03): 338-351 .
![]() | |
2. |
黄亭,李宗超,唐方头,孙吉泽,付长华,王晓辉,纪志伟,高孟潭,叶坤. 泸定地震大渡河区域灾害调查及格林函数库应用可行性探讨. 地球与行星物理论评(中英文). 2024(04): 440-452 .
![]() | |
3. |
李宗超,孙吉泽,高孟潭,陈学良,赵延娜,吴清. 青海玛多M7.4地震中野马滩大桥地震动特征初判. 地球与行星物理论评. 2022(01): 101-106 .
![]() | |
4. |
李宗超,高孟潭,孙吉泽,司洁戈,吴清,李奇. 海域俯冲带高频地震动模拟——以2021年2月13日日本福岛M_S7.1地震为例. 震灾防御技术. 2022(03): 516-528 .
![]() | |
5. |
罗全波,陈学良,高孟潭,李铁飞. 台湾双冬断层近场脉冲型地震动的数值模拟. 地震学报. 2019(03): 377-390+411 .
![]() |