Li Zongchao, Gao Mengtan, Chen Xueliang, Wu Qing. 2019: Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016. Acta Seismologica Sinica, 41(1): 100-110. DOI: 10.11939/jass.20180070
Citation: Li Zongchao, Gao Mengtan, Chen Xueliang, Wu Qing. 2019: Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016. Acta Seismologica Sinica, 41(1): 100-110. DOI: 10.11939/jass.20180070

Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016

More Information
  • Received Date: May 28, 2018
  • Revised Date: July 24, 2018
  • Available Online: January 21, 2019
  • Published Date: December 31, 2018
  • In this paper, the empirical Green’s function method is used to simulate and analyze the main engineering seismic parameters of 47 strong stations from K-net of the MJ7.3 (MW7.0) earthquake in Kumamoto county, Japan. The main conclusions are as follows: ① The basic spectrum simulation results fitted better, especially in the high frequency band 1–15 Hz; ② The simulated values of both peak ground acceleration and Arias intensity at the focal distance less than 50 km have the better fitting with observed values, they are diffused attenuating around the ellipse in the near field, and the simulated values of Arias intensity are greater than the observed values; ③ The predominant period fitting is good, as a whole, but there are larger differences in the local area. The simulated results cannot indicate the complexity of site condition.
  • 李宗超,陈学良,高孟潭,王建龙,鄢兆伦,李铁飞. 2016. 经验格林函数方法模拟强地面运动的研究进展[J]. 世界地震工程,32(2):209–216
    Li Z C,Chen X L,Gao M T,Wang J L,Yan Z L,Li T F. 2016. Research progress of empirical Green function method simulation strong ground motion[J]. World Earthquake Engineering,32(2):209–216 (in Chinese)
    李宗超. 2017. 大震近场地震动数值模拟不确定性研究[D]. 北京: 中国地震局地球物理研究所: 1–126.
    Li Z C. 2017. The Uncertainty Factors Research of Near-Field Ground Motion Numerical Simulation[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1–126 (in Chinese).
    王秀英,聂高众,张玲. 2010. 汶川地震触发崩滑与Arias强度关系研究[J]. 应用基础与工程科学学报,18(4):645–656 doi: 10.3969/j.issn.1005-0930.2010.04.012
    Wang X Y,Nie G Z,Zhang L. 2010. Relationship between landslides induced by the Wenchuan earthquake and Arias intensity[J]. Journal of Basic Science and Engineering,18(4):645–656 (in Chinese)
    李启成. 2010. 经验格林函数方法模拟地震动研究[D]. 哈尔滨: 中国地震局工程力学研究所: 1–119.
    Li Q C. 2010. Research on Ground Motion Simulation with Empirical Green Function Method[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–119 (in Chinese).
    王海云. 2004. 近场强地震动预测的有限断层震源模型[D]. 哈尔滨: 中国地震局工程力学研究所: 1–135.
    Wang H Y. 2004. Finite Fault Source Model for Predicating Near-Field Strong Ground Motion [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 1–135 (in Chinese).
    Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge: MIT Press: 438–483.
    Dai Z J,Li X J,Hou C L. 2014. An optimization method for the generation of ground motions compatible with multi-damping design spectra[J]. Soil Dynamics and Earthquake Engineering,66:199–205 doi: 10.1016/j.soildyn.2014.06.032
    Dan K, Watanabe T, Tanaka T.1989. A semi-empirical method to synthesize earthquake ground motions based on approximate far-field shear-wave displacement[G]//Journal of Structural and Construction Engineering Transactions of AIJ). Tokyo:Structural and Construction Engineering: 27−36.
    Del Gaudio V,Wasowski J. 2004. Time probabilistic evaluation of seismically induced landslide hazard in Irpinia (Southern Italy)[J].Soil Dyn Earthq Eng,24(12):915–928 doi: 10.1016/j.soildyn.2004.06.019
    Disaster Prevention Research Institute, Kyoto University. 2016. Kumamoto earthquake[EB/OL]. [2017−12−18]. http://www.dpri.kyoto-u.ac.jp/disaster_report/#6806.
    Irikura K. 1983. Semi-empirical estimation of strong ground motion during large earthquake[J]. Bull Disas Prev Res,33:151–156
    Irikura K. 1986. Prediction of strong acceleration motion using empirical Green’s function[C]//Proceedings of the 7th Japan Earthquake Engineering Symposium.Tokyo: Architectural Institute of Japan: 151−156.
    Irikura K,Kamae K. 1994. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique[J]. Ann Geophys,37(6):1721–1743
    Irikura K,Miyake H. 2011. Recipe for predicting strong ground motion from crustal earthquake scenarios[J]. Pure Appl Geophys,168(1/2):85–104
    Irikura K,Miyakoshi K,Kamae K,Yoshida K,Somei K,Kurahashi S,Miyake H. 2017. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake[J]. Earth Planets Space,69:10 doi: 10.1186/s40623-016-0586-y
    Kanamori H. 1979. A semi-empirical approach to prediction of long-period ground motions from great earthquake[J]. Bull Seismol Soc Am,69(6):1654–1670
    Li Z C,Chen X L,Gao M T,Jiang H,Li T F. 2017. Simulating and analyzing engineering parameters of Kyushu Earthquake,Japan,1997,by empirical Green function method[J]. J Seismol,21(2):367–384 doi: 10.1007/s10950-016-9606-4
    Li Z C,Gao M T,Jiang H,Chen X L,Li T F,Zhao X F. 2018. Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion[J]. Acta Geophys,66(4):523–540 doi: 10.1007/s11600-018-0171-9
    Miyake H,Iwata T,Irikura K. 2003. Source characterization for broadband ground-motion simulation:Kinematic heterogeneous source model and strong motion generation area[J]. Bull Seismol Soc Am,93(6):2531–2545 doi: 10.1785/0120020183
    National Research Institute for Earth Science and Disaster Resilience. 2016. Strong-motion seismograph networks (K-NET, KIK-NET)[EB/OL]. [2017−12−18]. http://www.kyoshin.bosai.go.jp/kyoshin/data/index_en.html.
    Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada A. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80 doi: 10.1785/gssrl.70.1.59
  • Cited by

    Periodical cited type(5)

    1. 李宗超,纪志伟,孙吉泽,陈鲲,谢俊举. 基于安徽合肥M_S4.7地震快速估计本地区M_S6.0设定地震加速度时程及其破坏能力. 地球与行星物理论评(中英文). 2025(03): 338-351 .
    2. 黄亭,李宗超,唐方头,孙吉泽,付长华,王晓辉,纪志伟,高孟潭,叶坤. 泸定地震大渡河区域灾害调查及格林函数库应用可行性探讨. 地球与行星物理论评(中英文). 2024(04): 440-452 .
    3. 李宗超,孙吉泽,高孟潭,陈学良,赵延娜,吴清. 青海玛多M7.4地震中野马滩大桥地震动特征初判. 地球与行星物理论评. 2022(01): 101-106 .
    4. 李宗超,高孟潭,孙吉泽,司洁戈,吴清,李奇. 海域俯冲带高频地震动模拟——以2021年2月13日日本福岛M_S7.1地震为例. 震灾防御技术. 2022(03): 516-528 .
    5. 罗全波,陈学良,高孟潭,李铁飞. 台湾双冬断层近场脉冲型地震动的数值模拟. 地震学报. 2019(03): 377-390+411 . 本站查看

    Other cited types(2)

Catalog

    Article views (1259) PDF downloads (88) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return