Li Xuejing, Gao Mengtan, Xu Weijin. 2019: Probabilistic seismic slope displacement hazard analysis based on Newmark displacement model:Take the area of Tianshui,Gansu Province,China as an example. Acta Seismologica Sinica, 41(6): 795-807. DOI: 10.11939/jass.20180075
Citation: Li Xuejing, Gao Mengtan, Xu Weijin. 2019: Probabilistic seismic slope displacement hazard analysis based on Newmark displacement model:Take the area of Tianshui,Gansu Province,China as an example. Acta Seismologica Sinica, 41(6): 795-807. DOI: 10.11939/jass.20180075

Probabilistic seismic slope displacement hazard analysis based on Newmark displacement model:Take the area of Tianshui,Gansu Province,China as an example

More Information
  • Received Date: November 03, 2018
  • Revised Date: June 03, 2019
  • Available Online: October 26, 2019
  • Published Date: October 31, 2019
  • Earthquake-induced landslide is a kind of destructive earthquake secondary disaster, which could cause serious casualties and property damage. The Tianshui area of Gansu Province has suffered severe landslides caused by several strong earthquakes. In this paper, based on the model of potential seismic sources and the prediction equation of Newmark displacement, we adopt the method of probabilistic seismic hazard analysis to study the probabilistic seismic landslide hazard in Tianshui area, and to calculate the values of Newmark displacement under the 10% probability of being exceeded in 50 years. Meanwhile, according to the Arias intensity under the 10% probability of being exceeded in 50 years in Tianshui area, combined with the relationship between Newmark displacement and Arias intensity, we also calculate the Newmark displacement of potential landslides when Tianshui area suffered from the Arias intensity under the 10% probability of being exceeded in 50 years. We compare the two sets of the values of Newmark displacement obtained by these two different methods, and find that there are significant difference, but still can reflect the relative landslide hazard of each site in Tianshui area. According to the results of landslide hazard zoning, more than 60% of the area in Tianshui has high earthquake-landslide hazard, and more than 50% of the region in Tianshui has very high earthquake-landslide hazard. The research results of this paper can be used as the reference materials of seismic hazard and risk assessment of Tianshui area, and can also be used as the reference materials of city planning, land use planning, earthquake emergency preparedness and other public policy making in Tianshui area.
  • 陈晓利,袁仁茂,庾露. 2013. Newmark方法在芦山地震诱发滑坡分布预测研究中的应用[J]. 地震地质,35(3):661–670. doi: 10.3969/j.issn.0253-4967.2013.03.019
    Chen X L,Yuan R M,Yu L. 2013. Applying the Newmark’s model to the assessment of earthquake-triggered landslides during the Lushan earthquake[J]. Seismology and Geology,35(3):661–670 (in Chinese).
    陈永明,石玉成,刘红玫,卢育霞. 2005. 黄土地区地震滑坡的分布特征及其影响因素分析[J]. 中国地震,21(2):235–243. doi: 10.3969/j.issn.1001-4683.2005.02.011
    Chen Y M,Shi Y C,Liu H M,Lu Y X. 2005. Distribution characteristics and influencing factors analysis of seismic loess landslides[J]. Earthquake Research in China,21(2):235–243 (in Chinese).
    高孟潭. 2015. GB18306—2015中国地震动参数区划图宣贯教材[M]. 北京: 中国质检出版社: 60−81.
    Gao M T. 2015. A Handbook of GB 18306−2015 Seismic Ground Motion Parameter Zonation Map of China[M]. Beijing: China Quality Inspection Publishing House: 60−81 (in Chinese).
    刘百篪,周俊喜,李秦梅. 1984. 1718年通渭地震和1654年天水地震地区航空照片判读[J]. 地震科学研究,6(1):56–67.
    Liu B C,Zhou J X,Li Q M. 1984. Interpretation of air photographs of 1718 Tongwei earthquake and 1654 Tianshui earthquake[J]. Journal of Seismological Research,6(1):56–67 (in Chinese).
    刘峰,张家声,黄雄南,牛向龙. 2009. 利用GIS方法研究南北地震带和中央造山带交汇区活动断裂与地震的关系[J]. 中国地震,25(4):394–404. doi: 10.3969/j.issn.1001-4683.2009.04.006
    Liu F,Zhang J S,Huang X N,Niu X L. 2009. A GIS research on the relationship between active faults and earthquakes in China North-South Seismic Belt and central orogenic system intersection zone[J]. Earthquake Research in China,25(4):394–404 (in Chinese).
    刘甲美. 2016. 概率地震滑坡危险性区划方法及应用[J]. 国际地震动态,(1):45–46.
    Liu J M. 2016. The method and application of probabilistic seismic hazard assessment for sliding displacement of slopes[J]. Recent Developments in World Seismology,(1):45–46 (in Chinese).
    孙萍,殷跃平,吴树仁,汪发武,陈立伟. 2009. 高速远程地震黄土滑坡发生机制试验研究[J]. 工程地质学报,17(4):449–454. doi: 10.3969/j.issn.1004-9665.2009.04.003
    Sun P,Yin Y P,Wu S R,Wang F W,Chen L W. 2009. An experimental study on the initiation mechanism of rapid and long run-out loess landslide caused by 1920 Haiyuan earthquake[J]. Journal of Engineering Geology,17(4):449–454 (in Chinese).
    唐川,朱静,张翔瑞. 2001. GIS支持下的地震诱发滑坡危险区预测研究[J]. 地震研究,24(1):73–81. doi: 10.3969/j.issn.1000-0666.2001.01.012
    Tang C,Zhu J,Zhang X R. 2001. GIS based earthquake triggered landslide hazard prediction[J]. Journal of Seismological Research,24(1):73–81 (in Chinese).
    王家鼎,张倬元. 1999. 地震诱发高速黄土滑坡的机理研究[J]. 岩土工程学报,21(6):670–674. doi: 10.3321/j.issn:1000-4548.1999.06.008
    Wang J D,Zhang Z Y. 1999. A study on the mechanism of high-speed loess landslide induced by earthquake[J]. Chinese Journal of Geotechnical Engineering,21(6):670–674 (in Chinese).
    王涛,吴树仁,石菊松,辛鹏. 2013. 基于简化Newmark位移模型的区域地震滑坡危险性快速评估:以汶川MS8.0级地震为例[J]. 工程地质学报,21(1):16–24. doi: 10.3969/j.issn.1004-9665.2013.01.003
    Wang T,Wu S R,Shi J S,Xin P. 2013. Case study on rapid assessment of regional seismic land-slide hazard based on simplified Newmark displacement model:Wenchuan MS8.0 earthquake[J]. Journal of Engineering Geology,21(1):16–24 (in Chinese).
    张帅,孙萍,邵铁全,石菊松,孟静,胡秋韵,王涛. 2016. 甘肃天水黄土梁峁区强震诱发滑坡特征研究[J]. 工程地质学报,24(4):519–526.
    Zhang S,Sun P,Shao T Q,Shi J S,Meng J,Hu Q Y,Wang T. 2016. Earthquake-triggered landslides in Tianshui loess hilly region,Gansu Province,China[J]. Journal of Engineering Geology,24(4):519–526 (in Chinese).
    周定一. 2010. 天水地区新近堆积黄土工程地质性质初探[J]. 甘肃科技,26(18):39–41. doi: 10.3969/j.issn.1000-0952.2010.18.015
    Zhou D Y. 2010. Preliminary study on engineering geological properties of newly accumulated loess in Tianshui area[J]. Gansu Science and Technology,26(18):39–41 (in Chinese).
    中华人民共和国住房和城乡建设部. 2015. 工程岩体分级标准(GB/T 50218—2014)[S]. 北京: 中国计划出版社: 12.
    Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 2015. Standard for Engineering Classification of Rock Masses GB/T 50218−2014)[S]. Beijing: China Planning Press: 12 (in Chinese).
    Ambraseys N N,Menu J M. 1988. Earthquake-induced ground displacements[J]. Earthq Eng Struct Dyn,16(7):985–1006. doi: 10.1002/eqe.4290160704
    Arias A. 1970. A measure of earthquake intensity[G]//Seismic Design for Nuclear Power Plants. Cambridge: Massachusetts Institute of Technology Press: 438−483.
    Bray J D,Travasarou T. 2007. Simplified procedure for estimating earthquake-induced deviatoric slope displacements[J]. J Geotech Geoenviron Eng,133(4):381–392. doi: 10.1061/(ASCE)1090-0241(2007)133:4(381)
    Del Gaudio V,Pierri P,Wasowski J. 2003. An approach to time-probabilistic evaluation of seismically induced landslide hazard[J]. Bull Seismol Soc Am,93(2):557–569. doi: 10.1785/0120020016
    Du W, Wang G. 2013. Quantifying epistemic uncertainty and aleatory variability of Newmark displacements under scenario earthquakes[C]//Proceedings of the 4th International Symposium on Geotechnical Safety and Risk. Hong Kong: CRC Press: 28−31.
    Du W Q,Wang G. 2016. A one-step Newmark displacement model for probabilistic seismic slope displacement hazard analysis[J]. Eng Geol,205:12–23. doi: 10.1016/j.enggeo.2016.02.011
    Foulser-Piggott R,Stafford P J. 2012. A predictive model for Arias intensity at multiple sites and consideration of spatial correlations[J]. Earthq Eng Struct Dyn,41(3):431–451. doi: 10.1002/eqe.1137
    Gülerce Z,Balal O. 2017. Probabilistic seismic hazard assessment for sliding displacement of slopes:An application in Turkey[J]. Bull Earthq Eng,15(7):2737–2760. doi: 10.1007/s10518-016-0079-1
    Hsieh S Y,Lee C T. 2011. Empirical estimation of the Newmark displacement from the Arias intensity and critical acceleration[J]. Eng Geol,122(1/2):34–42.
    Jarvis A, Reuter H I, Nelson A, Guevara E. 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT)[EB/OL]. [2018−06−04].http://srtm.csi.cgiar.org.
    Jibson R W. 1993. Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis[J]. Transp Res Rec,1411:9–17.
    Jibson R W, Harp E L, Michael J A. 1998. A Method for Producing Digital Probabilistic Seismic Landslide Hazard Maps: An Example From the Los Angeles, California, Area[R]. Reston, Virginia: U.S. Geological Survey: 98−113.
    Jibson R W,Harp E L,Michael J A. 2000. A method for producing digital probabilistic seismic landslide hazard maps[J]. Eng Geol,58(3/4):271–289.
    Jibson R W. 2007. Regression models for estimating coseismic landslide displacement[J]. Eng Geol,91(2/4):209–218.
    Jibson R W, Michael J A. 2009. Maps Showing Seismic Landslide Hazards in Anchorage, Alaska[R]. Reston, Virginia: U.S. Geological Survey: 8−11.
    Jibson R W. 2011. Methods for assessing the stability of slopes during earthquakes:A retrospective[J]. Eng Geol,122(1/2):43–50.
    Newmark N M. 1965. Effects of earthquakes on dams and embankments[J]. Géotechnique,15(2):139–160. doi: 10.1680/geot.1965.15.2.139
    Rathje E M,Saygili G. 2008. Probabilistic seismic hazard analysis for the sliding displacement of slopes:Scalar and vector approaches[J]. J Geotech Geoenviron Eng,134(6):804–814. doi: 10.1061/(ASCE)1090-0241(2008)134:6(804)
    Rathje E M,Saygili G. 2011. Estimating fully probabilistic seismic sliding displacements of slopes from a pseudoprobabilistic approach[J]. J Geotech Geoenviron Eng,137(3):208–217. doi: 10.1061/(ASCE)GT.1943-5606.0000431
    Saygili G,Rathje E M. 2008. Empirical predictive models for earthquake-induced sliding displacements of slopes[J]. J Geotech Geoenviron Eng,134(6):790–803. doi: 10.1061/(ASCE)1090-0241(2008)134:6(790)
    Saygili G,Rathje E M. 2009. Probabilistically based seismic landslide hazard maps:An application in southern California[J]. Eng Geol,109(3/4):183–194.
    Travasarou T,Bray J D,Abrahamson N A. 2003. Empirical attenuation relationship for Arias intensity[J]. Earthq Eng Struct Dyn,32(7):1133–1155. doi: 10.1002/eqe.270
    Urzúa A,Christian J T. 2013. Sliding displacements due to subduction-zone earthquakes[J]. Eng Geol,166:237–244. doi: 10.1016/j.enggeo.2013.08.005
    Wilson R C,Keefer D K. 1983. Dynamic analysis of a slope failure from the 6 August 1979 Coyote Lake,California,earthquake[J]. Bull Seismol Soc Am,73(3):863–877.
  • Cited by

    Periodical cited type(1)

    1. 李祥秀,范世凯,李小军,刘爱文. 场地地震动特征周期对高层建筑结构工程材料用量和破坏状态影响的研究. 地震科学进展. 2024(08): 497-505 .

    Other cited types(0)

Catalog

    Article views (2139) PDF downloads (82) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return