Luo Quanbo, Chen Xueliang, Gao Mengtan, Li Tiefei. 2019: Numerical simulation of near-field pulse-like ground motion for the Shuantung fault in Taiwan region. Acta Seismologica Sinica, 41(3): 377-390. DOI: 10.11939/jass.20180103
Citation: Luo Quanbo, Chen Xueliang, Gao Mengtan, Li Tiefei. 2019: Numerical simulation of near-field pulse-like ground motion for the Shuantung fault in Taiwan region. Acta Seismologica Sinica, 41(3): 377-390. DOI: 10.11939/jass.20180103

Numerical simulation of near-field pulse-like ground motion for the Shuantung fault in Taiwan region

More Information
  • Received Date: September 03, 2018
  • Revised Date: January 21, 2019
  • Available Online: May 21, 2019
  • Published Date: April 30, 2019
  • Based on the geological and geomorphological characteristics of western Taiwan and the source parameters of the 1999 MW7.6 Jiji (Chi-Chi) earthquake, we have established a 3D velocity structure model and two types of source models. Based on the accumulation of dislocation in the crust and the propagation characteristics of stress and strain after the rock fracture, 3D finite difference method was used to simulate the near-field pulse-like ground motion that would occur in the Shuantung fault activity. The results show that the peak velocity of the horizontal component perpendicular to the fault strike of the strike-slip fault is large, and so is the peak velocity of the vertical component of the reverse fault. The double-sided velocity pulses generated by the directivity effect are mainly concentrated in the direction perpendicular to the fault sliding component, while the single-sided velocity pulses generated by the fling-step effect are mainly concentrated in the direction parallel to the fault sliding component. Because of the mutual control of the directivity effect and the hanging wall effect, the near-field pulse-like ground motions exhibit an asymmetrical zonal distribution, and the velocity pulses mostly distributed within 15 km from the strike-slip fault trace and 10 km from the reverse fault trace. The velocity response spectrum gradually increases along the rupture direction within the coverage of the fault plane, and the velocity pulse may cause severe shear damage to large buildings. Influenced by the characteristics of the asperities, the seismic wave field shows that Nantou, Taichung, and Miaoli are in risk region of strong ground motion.
  • 高孟潭,俞言祥,张晓梅,吴健,胡平,丁彦慧. 2002. 北京地区地震动的三维有限差分模拟[J]. 中国地震,18(4):356–364. doi: 10.3969/j.issn.1001-4683.2002.04.005
    Gao M T,Yu Y X,Zhang X M,Wu J,Hu P,Ding Y H. 2002. Three-dimensional finite-difference simulations of ground motions in the Beijing area[J]. Earthquake Research in China,18(4):356–364 (in Chinese).
    贺秋梅. 2012. 地震动的速度脉冲对结构反应及结构减隔震性能影响研究[D]. 北京: 中国地震局地球物理研究所: 1−10.
    He Q M. 2012. Study on the Influence of Seismic Velocity Pulse on Structural Response and Isolation Properties[D]. Beijing: Institute of Geophysics, China Earthquake Administration: 1−10 (in Chinese).
    姜慧,黄剑涛,俞言祥,温增平. 2009. 地表破裂断层近场速度大脉冲研究[J]. 华南地震,29(2):1–9. doi: 10.3969/j.issn.1001-8662.2009.02.001
    Jiang H,Huang J T,Yu Y X,Wen Z P. 2009. Study on large velocity pulses near surface rupture faults[J]. South China Journal of Seismology,29(2):1–9 (in Chinese).
    李晓轩. 2016. 速度脉冲提取与夹杂对地震动的影响研究[D]. 哈尔滨: 中国地震局工程力学研究所: 10−11.
    Li X X. 2016. Study on Extraction of the Velocity Pulse and Effects of Inclusion on Ground Motion[D]. Harbin: Institute of Engi-neering Mechanics, China Earthquake Administration: 10−11 (in Chinese).
    李宗超,高孟潭,陈学良,吴清. 2019. 2016年熊本MJ7.3地震的工程地震动参数模拟及分布特征分析[J]. 地震学报,41(1):100–110.
    Li Z C,Gao M T,Chen X L,Wu Q. 2019. Engineering ground motion parameters simulation and distribution characteristics analysis of Kumamoto MJ7.3 earthquake in 2016[J]. Acta Seismologica Sinica,41(1):100–110 (in Chinese).
    刘启方,袁一凡,金星,丁海平. 2006. 近断层地震动的基本特征[J]. 地震工程与工程振动,26(1):1–10. doi: 10.3969/j.issn.1000-1301.2006.01.001
    Liu Q F,Yuan Y F,Jin X,Ding H P. 2006. Basic characteristics of near-fault ground motion[J]. Earthquake Engineering and Engineering Vibration,26(1):1–10 (in Chinese).
    罗全波,陈学良,高孟潭,李宗超,李铁飞,张振. 2018. 近断层速度脉冲与震源机制的关系浅析[J]. 震灾防御技术,13(3):646–661.
    Luo Q B,Chen X L,Gao M T,Li Z C,Li T F,Zhang Z. 2018. Relationship between near-fault velocity pulse and focal mecha-nism[J]. Technology for Earthquake Disaster Prevention,13(3):646–661 (in Chinese).
    潘波,许建东,关口春子,何宏林. 2006. 北京地区近断层强地震动模拟[J]. 地震地质,28(4):623–634. doi: 10.3969/j.issn.0253-4967.2006.04.010
    Pan B,Xu J D,Haruko S,He H L. 2006. Simulation of the near-fault strong ground motion in Beijing region[J]. Seismology and Geology,28(4):623–634 (in Chinese).
    蒲武川,梁瑞军,戴枫禹,黄斌. 2017. 基于三角函数的脉冲型近场地震动的近似模型[J]. 振动与冲击,36(4):208–213.
    Pu W C,Liang R J,Dai F Y,Huang B. 2017. An analytical model for approximating pulse-like near-fault ground motions[J]. Journal of Vibration and Shock,36(4):208–213 (in Chinese).
    王海云. 2004. 近场强地震动预测的有限断层震源模型[D]. 哈尔滨: 中国地震局工程力学研究所: 39−64.
    Wang H Y. 2004. Finite Fault Source Model for Predicting Near-Field Strong Ground Motion[D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration: 39−64 (in Chinese).
    王卫民,赵连锋,李娟,姚振兴. 2005. 1999年台湾集集地震震源破裂过程[J]. 地球物理学报,48(1):132–147. doi: 10.3321/j.issn:0001-5733.2005.01.019
    Wang W M,Zhao L F,Li J,Yao Z X. 2005. Rupture process of the Chi-Chi (Taiwan)earthquake in 1999[J]. Chinese Journal of Geophysics,48(1):132–147 (in Chinese).
    谢俊举,温增平,李小军,李亚琦,吕红山,黄隽彦. 2012. 基于小波方法分析汶川地震近断层地震动的速度脉冲特性[J]. 地球物理学报,55(6):1963–1972.
    Xie J J,Wen Z P,Li X J,Li Y Q,Lü H S,Huang J Y. 2012. Analysis of velocity pulses for near-fault strong motions from the Wenchuan earthquake based on wavelet method[J]. Chinese Journal of Geophysics,55(6):1963–1972 (in Chinese).
    徐龙军,谢礼立. 2005. 集集地震近断层地震动频谱特性[J]. 地震学报,27(6):656–665. doi: 10.3321/j.issn:0253-3782.2005.06.010
    Xu L J,Xie L L. 2005. Characteristics of frequency content of near-fault ground motions during the Chi-Chi earthquake[J]. Acta Seismologica Sinica,27(6):656–665 (in Chinese).
    俞言祥,高孟潭. 2001. 台湾集集地震近场地震动的上盘效应[J]. 地震学报,23(6):615–621. doi: 10.3321/j.issn:0253-3782.2001.06.007
    Yu Y X,Gao M T. 2001. Effects of the hanging wall and footwall on peak acceleration during the Chi-Chi earthquake,Taiwan[J]. Acta Seismologica Sinica,23(6):615–621 (in Chinese).
    袁一凡, 田启文. 2012. 工程地震学[M]. 北京: 地震出版社: 128−138.
    Yuan Y F, Tian Q W. 2012. Engineering Seismology[M]. Beijing: Seismological Press: 128−138 (in Chinese).
    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255
    Benioff H. 1955. Mechanism and strain characteristics of the White Wolf fault as indicated by the aftershock sequence,earthquakes in Kern County,California during 1955[J]. Calif Div Mines Bull,171:199–202.
    Bray J D,Rodriguez-Marek A. 2004. Characterization of forward-directivity ground motions in the near-fault region[J]. Soil Dyn Earthq Eng,24(11):815–828. doi: 10.1016/j.soildyn.2004.05.001
    Carena S,Suppe J,Kao H. 2002. Active detachment of Taiwan illuminated by small earthquakes and its control of first-order topography[J]. Geology,30(10):935–938. doi: 10.1130/0091-7613(2002)030<0935:ADOTIB>2.0.CO;2
    Cattin R,Loevenbruck A,Le Pichon X. 2004. Why does the co-seismic slip of the 1999 Chi-Chi (Taiwan)earthquake increase progressively northwestward on the plane of rupture? [J]. Tectonophysics,386(1/2):67–80.
    Chen C H,Teng T L,Gung Y C. 1998. Ten-second Love-wave propagation and strong ground motions in Taiwan[J]. J Geophys Res,103(B9):21253–21273. doi: 10.1029/98JB00613
    Chen R Y,Kao H,Liang W T,Shin T C,Tsai Y B,Huang B S. 2009. Three-dimensional patterns of seismic deformation in the Taiwan region with special implication from the 1999 Chi-Chi earthquake sequence[J]. Tectonophysics,466(3/4):140–151.
    Chi W C,Dreger D,Kaverina A. 2001. Finite-source modeling of the 1999 Taiwan (Chi-Chi)earthquake derived from a dense strong-motion network[J]. Bull Seismol Soc Am,91(5):1144–1157.
    Dickinson B W,Gavin H P. 2011. Parametric statistical generalization of uniform-hazard earthquake ground motions[J]. J Struct Eng,137(3):410–422. doi: 10.1061/(ASCE)ST.1943-541X.0000330
    Hanks T C,Kanamori H. 1979. A moment magnitude scale[J]. J Geophys Res,84(B5):2348–2350. doi: 10.1029/JB084iB05p02348
    Heaton T H,Hall J F,Wald D J,Halling M W. 1995. Response of high-rise and base-isolated buildings to a hypothetical MW7.0 blind thrust earthquake[J]. Science,267(5195):206–211. doi: 10.1126/science.267.5195.206
    Hirasawa T,Stauder W. 1965. On the seismic body waves from a finite moving source[J]. Bull Seismol Soc Am,55:237–262.
    Irikura K,Miyakoshi K,Kamae K,Yoshida K,Somei K,Kurahashi S,Miyake H. 2017. Applicability of source scaling relations for crustal earthquakes to estimation of the ground motions of the 2016 Kumamoto earthquake[J]. Earth Planets Space,69(1):10. doi: 10.1186/s40623-016-0586-y
    Iwaki A,Morikawa N,Maeda T,Aoi S,Fujiwara H. 2013. Finite-difference simulation of long-period ground motion for the Sagami Trough megathrust earthquakes[J]. J Disaster Res,8(5):926–940. doi: 10.20965/jdr.2013.p0926
    Kawase H,Aki K. 1990. Topography effect at the critical SV-wave incidence:Possible explanation of damage pattern by the Whittier Narrows,California,earthquake of 1 October 1987[J]. Bull Seismol Soc Am,80(1):1–22.
    Li Z C,Gao M T,Jiang H,Chen X L,Li T F,Zhao X F. 2018. Sensitivity analysis study of the source parameter uncertainty factors for predicting near-field strong ground motion[J]. Acta Geophys,66(4):523–540. doi: 10.1007/s11600-018-0171-9
    Luo Q B,Chen X L,Gao M T,Li Z C,Zhang Z,Zhou D. 2019. Simulating the near-fault large velocity pulses of the Chi-Chi (MW7.6) earthquake with kinematic model[J]. J Seismol,23(1):25–38. doi: 10.1007/s10950-018-9791-4
    Ma K F,Wang J H,Zhao D P. 1996. Three-dimensional seismic velocity structure of the crust and uppermost mantle beneath Taiwan[J]. J Phys Earth,44(2):85–105. doi: 10.4294/jpe1952.44.85
    Murotani S,Miyake H,Koketsu K. 2008. Scaling of characterized slip models for plate-boundary earthquakes[J]. Earth Planets Space,60(9):987–991. doi: 10.1186/BF03352855
    Oglesby D D,Archuleta R J. 1997. A faulting model for the 1992 Petrolia earthquake:Can extreme ground acceleration be a source effect? [J]. J Geophys Res,102(B6):11877–11897. doi: 10.1029/97JB00475
    Somerville P,Irikura K,Graves R,Sawada S,Wald D,Abrahamson N,Iwasaki Y,Kagawa T,Smith N,Kowada N. 1999. Characterizing crustal earthquake slip models for the prediction of strong ground motion[J]. Seismol Res Lett,70(1):59–80. doi: 10.1785/gssrl.70.1.59
    Wang C Y,Chang C H,Yen H Y. 2000. An interpretation of the 1999 Chi-Chi earthquake in Taiwan based on the thin-skinned thrust model[J]. Terr Atmos Ocean Sci,11(3):609–630. doi: 10.3319/TAO.2000.11.3.609(CCE)
    Wells D L,Coppersmith K J. 1994. New empirical relationships among magnitude,rupture length,rupture width,rupture area,and surface displacement[J]. Bull Seismol Soc Am,84(4):974–1002.
  • Cited by

    Periodical cited type(9)

    1. 丁俊柯,马传璧,张万辉,赵建明,王震坤. 基于EEMD方法提取唐山井水位固体潮响应特征. 地下水. 2024(04): 63-65 .
    2. 吴明,杨晓东,刘洁. 石泉井水位异常与九寨沟7.0级地震关联性探讨. 地震工程学报. 2023(02): 441-446 .
    3. 吕芳,穆慧敏,李艳,郭文峰,姚林鹏,宫静芝. 利用微水试验方法研究井-含水层水力参数及其与地震的对应关系. 地震地质. 2023(03): 638-651 .
    4. 刘伟,白细民,吕少杰,史浙明,齐之钰,何冠儒. 基于井水位气压效应计算含水层的水力参数. 地震地质. 2023(03): 652-667 .
    5. 李继业,晏锐,张思萌,胡澜缤,孟令蕾,周晨. 井水位潮汐响应与小地震调制作用的关系. 地震地质. 2023(03): 668-688 .
    6. 刘阁,姬霄鹤,郭少峰,李志涛. 范县井水位对远场大震的同震响应特征. 华北地震科学. 2023(03): 74-79 .
    7. 洪旭瑜,陈祥开,秦双龙,林加宝. M_S≥6.0地震引起的永安井水位同震响应特征研究. 华南地震. 2023(03): 39-45 .
    8. 胡米东,毛华锋,陈启林,王皓,张杰,霍雨佳,黄群. 茅山断裂带周边地区流体井水位观测特征及机理分析. 高原地震. 2022(04): 21-28 .
    9. 何冠儒,史浙明. 地下水对气压和固体潮响应研究进展. 地震研究. 2021(04): 541-549 .

    Other cited types(0)

Catalog

    Article views (1908) PDF downloads (72) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return