Citation: | Liu Zhaofei, Li Ying, Chen Zhi, Cui Yueju, Lu Chang, Yang Jiang, Zhao Yuanxin. 2019: Gas emission from active fault zones around the Jilantai faulted depression basin and its implications for fault activities. Acta Seismologica Sinica, 41(5): 613-632. DOI: 10.11939/jass.20190025 |
曹刚. 2001. 内蒙古地震研究[M]. 北京: 地震出版社: 1−174.
|
Cao G. 2001. Earthquake Research in Inner Mongolia[M]. Beijing: Seismological Press: 1−174 (in Chinese).
|
程鉴基. 1997. 汞断层气异常与活断层关系浅析[J]. 地壳形变与地震,17(2):97–100.
|
Cheng J J. 1997. Elementary analysis of relationship between mercury anomaly of fault product gas and active fault[J]. Crustal Deformation and Earthquake,17(2):97–100 (in Chinese).
|
杜建国, 李营, 崔月菊, 孙凤霞. 2018. 地震流体地球化学[M]. 北京: 地震出版社: 1−272.
|
Du J G, Li Y, Cui Y J, Sun F X. 2018. Seismic Fluid Geochemistry[M]. Beijing: Seismological Press: 1−272 (in Chinese).
|
付碧宏,王萍,孔屏,郑国东,王刚,时丕龙. 2008. 四川汶川5·12大地震同震滑动断层泥的发现及构造意义[J]. 岩石学报,24(10):2237–2243.
|
Fu B H,Wang P,Kong P,Zheng G D,Wang G,Shi P L. 2008. Preliminary study of coseismic fault gouge occurred in the slip zone of the Wenchuan MS8.0 earthquake and its tectonic implication[J]. Acta Petrologica Sinica,24(10):2237–2243 (in Chinese).
|
高立新,孙加林,张晖. 2010. 中强地震平静是汶川8.0级地震前最显著的地震活动异常[J]. 地震,30(1):90–97. doi: 10.3969/j.issn.0253-4967.2010.01.009
|
Gao L X,Sun J L,Zhang H. 2010. Moderate-to-strong earthquake quiescence is the most significant seismic anomaly before the Wenchuan 8.0 earthquake[J]. Earthquake,30(1):90–97 (in Chinese).
|
高立新,戴勇,贾宁. 2012. 鄂尔多斯块体周缘地震活动特征分析[J]. 防灾科技学院学报,14(4):70–79. doi: 10.3969/j.issn.1673-8047.2012.04.014
|
Gao L X,Dai Y,Jia N. 2012. Study on seismic activity characteristics in Ordos block and seismic risk analysis of northern edge[J]. Journal of Institute of Disaster Prevention,14(4):70–79 (in Chinese).
|
高立新,韩晓明,戴勇,李娟,杨红缨. 2017. 鄂尔多斯地块的运动特性与现今地震活动性[J]. 大地测量与地球动力学,37(4):349–354.
|
Gao L X,Han X M,Dai Y,Li J,Yang H Y. 2017. Movement characteristics and the present seismic behavior of the Ordos block[J]. Journal of Geodesy and Geodynamics,37(4):349–354 (in Chinese).
|
郭正府,郑国东,孙玉涛,张茂亮,张丽红,成智慧. 2017. 中国大陆地质源温室气体释放[J]. 矿物岩石地球化学通报,36(2):204–212. doi: 10.3969/j.issn.1007-2802.2017.02.003
|
Guo Z F,Zheng G D,Sun Y T,Zhang M L,Zhang L H,Cheng Z H. 2017. Greenhouse gases emitted from geological sources in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry,36(2):204–212 (in Chinese).
|
韩清. 1982. 乌兰布和沙漠的土壤地球化学特征[J]. 中国沙漠,2(3):24–31.
|
Han Q. 1982. The geochemical characteristics of the soils in the Ulanbuh desert[J]. Journal of Desert Research,2(3):24–31 (in Chinese).
|
何继善. 1990. 可控源音频大地电磁法[M]. 长沙: 中南工业大学出版社: 1−169.
|
He J S. 1990. Control Source Audio-Frequency Magnetotelluric[M]. Changsha: Central South University of Technology Press: 1−169 (in Chinese).
|
李帝铨,底青云,王光杰,李英贤,石昆法,岳安平,白大为. 2008. CSAMT探测断层在北京新区规划中的应用[J]. 地球物理学进展,23(6):1963–1969.
|
Li D Q,Di Q Y,Wang G J,Li Y X,Shi K F,Yu A P,Bai D W. 2008. Fault detection by CSAMT and its application to new district planning in Beijing[J]. Progress in Geophysics,23(6):1963–1969 (in Chinese).
|
李营,杜建国,王富宽,周晓成,盘晓东,魏汝庆. 2009. 延怀盆地土壤气体地球化学特征[J]. 地震学报,31(1):82–91. doi: 10.3321/j.issn:0253-3782.2009.01.009
|
Li Y,Du J G,Wang F K,Zhou X C,Pan X D,Wei R Q. 2009. Geochemical characteristics of soil gas in Yanqing-Huailai basin,North China[J]. Acta Seismologica Sinica,31(1):82–91 (in Chinese).
|
刘菁华. 2006. 活断层上覆盖层中氡迁移的数值模拟及反演拟合[D]. 吉林: 吉林大学: 23−27.
|
Liu J H. 2006. Numerical Simulation, Inversion Fitting of Radon Migration in the Overburden Above Active Fault[D]. Jilin: Jilin University: 23−27 (in Chinese).
|
马向贤,郑国东,梁收运,樊成意,王自翔,梁明亮. 2012. 地质甲烷对大气甲烷源与汇的贡献[J]. 矿物岩石地球化学通报,31(2):139–145. doi: 10.3969/j.issn.1007-2802.2012.02.007
|
Ma X X,Zheng G D,Liang S Y,Fan C Y,Wang Z X,Liang M L. 2012. Contributions of geologic methane to atmospheric methane sources and sinks[J]. Bulletin of Mineralogy,Petrology and Geochemistry,31(2):139–145 (in Chinese).
|
牟雪松,马俊,王永达,范育新. 2018. 粒度分布的端元建模分析及检验:以 " 吉兰泰—河套” 盆地西部DK-12钻孔晚第四纪沉积物为例[J]. 古地理学报,20(3):489–500. doi: 10.7605/gdlxb.2018.03.036
|
Mou X S,Ma J,Wang Y D,Fan Y X. 2018. End-member modeling analysis and test of grain-size distribution:A case from the Late Quaternary sediments of borehole DK-12 in the western Jilantai-Hetao basin[J]. Journal of Paleogeography,20(3):489–500 (in Chinese).
|
邵永新. 2012. 土壤氡方法用于断层活动性研究的讨论[J]. 中国地震,28(1):51–60. doi: 10.3969/j.issn.1001-4683.2012.01.006
|
Shao Y X. 2012. A discussion of fault activity research using the measurement results of soil radon[J]. Earthquake Research in China,28(1):51–60 (in Chinese).
|
石昆法,张庚利,李英贤,于昌明. 2001. CSAMT法在山东蓬家夼地区层间滑动角砾型金矿成矿预测中的应用[J]. 地质与勘探,37(1):86–90. doi: 10.3969/j.issn.0495-5331.2001.01.020
|
Shi K F,Zhang G L,Li Y X,Yu C M. 2001. Application of CSAMT method in predicting interlayer sliding breccia type gold deposits in Pengjiakuang region,Shandong Province[J]. Geology and Prospecting,37(1):86–90 (in Chinese).
|
谭儒蛟,胡瑞林,徐文杰,梁辉,曾如意,龚飞. 2007. 金沙江龙蟠变形体隐伏构造CSAMT探测与解译[J]. 地球物理学进展,22(1):283–288. doi: 10.3969/j.issn.1004-2903.2007.01.042
|
Tan R J,Hu R L,Xu W J,Liang H,Zeng R Y,Gong F. 2007. CSAMT exploration and geological interpretation of perdue tectonic structures of Longpan deformation slope in Jinsha River[J]. Progress in Geophysics,22(1):283–288 (in Chinese).
|
王华林,郑国东,王纪强,付海清,马向贤,胡超. 2017. 山东黄县弧形断裂带断层泥铁元素化学种分布特征及其地震地质意义[J]. 中国地震,33(2):248–259. doi: 10.3969/j.issn.1001-4683.2017.02.006
|
Wang H L,Zheng G D,Wang J Q,Fu H Q,Ma X X,Hu C. 2017. Iron speciation of fault gouge from the Huangxian arc fault in Shandong Province,eastern China and its seismo-geological implications[J]. Earthquake Research in China,33(2):248–259 (in Chinese).
|
王萍,付碧宏,张斌,孔屏,王刚. 2009. 汶川8.0级地震地表破裂带与岩性关系[J]. 地球物理学报,52(1):131–139.
|
Wang P,Fu B H,Zhang B,Kong P,Wang G. 2009. Relationships between surface ruptures and lithologic characteristics of the Wenchuan MS8.0 earthquake[J]. Chinese Journal of Geophysics,52(1):131–139 (in Chinese).
|
王喜龙,李营,杜建国,陈志,周晓成,李新艳,崔月菊,王海燕,张志宏. 2017. 首都圈地区土壤气Rn,Hg,CO2地球化学特征及其成因[J]. 地震学报,39(1):85–101. doi: 10.11939/jass.2017.01.008
|
Wang X L,Li Y,Du J G,Chen Z,Zhou X C,Li X Y,Cui Y J,Wang H Y,Zhang Z H. 2017. Geochemical characteristics of soil gases Rn,Hg and CO2 and their genesis in the capital area of China[J]. Acta Seismologica Sinica,39(1):85–101 (in Chinese).
|
王云,赵慈平,冉华,陈坤华. 2015. 地壳流体CO2的释放与地震关系:回顾与展望[J]. 地震研究,38(1):119–130. doi: 10.3969/j.issn.1000-0666.2015.01.016
|
Wang Y,Zhao C P,Ran H,Chen K H. 2015. The relationship between the release of crustal fluid CO2 and earthquake:Retrospect and prospect[J]. Journal of Seismological Research,38(1):119–130 (in Chinese).
|
魏国孝. 2011. 现代吉兰泰盆地地下水演化规律及古大湖补给水源研究[D]. 兰州: 兰州大学: 1−143.
|
Wei G X. 2011. Research on Groundwater Recharge and Evolution in Jilantai Basin and Water Supply for Jilantai-Hetao Paleo-Megalake[D]. Lanzhou: Lanzhou University: 1−143 (in Chinese).
|
徐伟进,高孟潭,任雪梅,冯希杰. 2008. 鄂尔多斯地块区内地震活动特征的初步研究[J]. 中国地震,24(4):388–398. doi: 10.3969/j.issn.1001-4683.2008.04.009
|
Xu W J,Gao M T,Ren X M,Feng X J. 2008. Study on seismic activity characteristics in the Ordos block[J]. Earthquake Research in China,24(4):388–398 (in Chinese).
|
杨江. 2018. 首都圈地区土壤气体地球化学特征[D]. 北京: 中国地震局地震预测研究所: 1−63.
|
Yang J. 2018. Soil Gas Geochemistry Characteristics in the Capital Area of China[D]. Beijing: Institute of Earthquake Forecasting, China Earthquake Administration: 1−63 (in Chinese).
|
杨丽萍. 2008. 基于遥感与DEM的 " 吉兰泰—河套” 古大湖重建研究[D]. 兰州: 兰州大学: 1−10.
|
Yang L P. 2008. Reconstruction of Paleo-Megalake ‘Jilantai-Hetao’ Based on Remote Sensing and DEM[D]. Lanzhou: Lanzhou University: 1−10 (in Chinese).
|
于昌明. 1998. CSAMT方法在寻找隐伏金矿中的应用[J]. 地球物理学报,41(1):133–138. doi: 10.3321/j.issn:0001-5733.1998.01.015
|
Yu C M. 1998. The application of CSAMT method in looking for hidden gold mine[J]. Acta Geophysica Sinica,41(1):133–138 (in Chinese).
|
张复. 2015. 吉兰泰盆地MIS 3阶段沉积环境及生态环境研究[D]. 兰州: 兰州大学: 50−60.
|
Zhang F. 2015. The Sedimentary and Ecological Environment Research of Jilantai Basin During the MIS 3[D]. Lanzhou: Lanzhou University: 50−60 (in Chinese).
|
赵建明,李营,陈志,刘兆飞,赵荣琦,荣伟健. 2018. 蔚县—广灵断裂和口泉断裂气体排放和断裂活动性关系[J]. 地震地质,40(6):1402–1416.
|
Zhao J M,Li Y,Chen Z,Liu Z F,Zhao R Q,Rong W J. 2018. Correlation between gas geochemical emission and fault activity of the Yuxian-Guangling and Kouquan faults[J]. Seismology and Geology,40(6):1402–1416 (in Chinese).
|
周晓成,郭文生,杜建国,王传远,刘雷. 2007. 呼和浩特地区隐伏断层土壤气氡、汞地球化学特征[J]. 地震,27(1):70–76. doi: 10.3969/j.issn.1001-8662.2007.01.010
|
Zhou X C,Guo W S,Du J G,Wang C Y,Liu L. 2007. The geochemical characteristics of radon and mercury in the soil gas of buried faults in the Hohhot district[J]. Earthquake,27(1):70–76 (in Chinese).
|
周晓成,孙凤霞,陈志,吕超甲,李静,仵柯田,杜建国. 2017. 汶川MS8.0地震破裂带CO2、CH4、Rn和Hg脱气强度[J]. 岩石学报,33(1):291–303.
|
Zhou X C,Sun F X,Chen Z,Lü C J,Li J,Wu K T,Du J G. 2017. Degassing of CO2,CH4,Rn and Hg in the rupture zones produced by Wenchuan MS8.0 earthquake[J]. Acta Petrologica Sinica,33(1):291–303 (in Chinese).
|
Annunziatellis A,Beaubien S E,Bigi S,Ciotoli G,Coltella M,Lombardi S. 2008. Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy):Implications for CO2 geological storage[J]. Int J Greenh Gas Con,2(3):353–372. doi: 10.1016/j.ijggc.2008.02.003
|
Baixeras C,Erlandsson B,Font L,Jönsson G. 2001. Radon emanation from soil samples[J]. Radiat Meas,34(1/6):441–443.
|
Baubron J C,Rigo A,Toutain J P. 2002. Soil gas profiles as a tool to characterise active tectonic areas:The Jaut Pass example (Pyrenees,France)[J]. Earth Planet Sci Lett,196(1/2):69–81.
|
Becken M,Ritter O,Park S K,Bedrosian P A,Weckmann U,Weber M. 2008. A deep crustal fluid channel into the San Andreas fault system near Parkfield,California[J]. Geophys J Int,173(2):718–732. doi: 10.1111/j.1365-246X.2008.03754.x
|
Chen Z,Zhou X,Du J,Xie C,Liu L,Li Y,Yi L,Liu H,Cui Y. 2015. Hydrochemical characteristics of hot spring waters in the Kangding district related to the Lushan MS=7.0 earthquake in Sichuan,China[J]. Nat Hazards Earth Syst Sci,15(6):1149–1156. doi: 10.5194/nhess-15-1149-2015
|
Chen Z,Li Y,Liu Z F,Wang J,Zhou X C,Du J G. 2018. Radon emission from soil gases in the active fault zones in the capital of China and its environmental effects[J]. Sci Rep,8(1):16772. doi: 10.1038/s41598-018-35262-1
|
Chen Z,Li Y,Liu Z F,Zheng G D,Xu W,Yan W,Yi L. 2019. CH4 and CO2 emissions from mud volcanoes on the southern margin of the Junggar Basin,NW China:Origin,output,and relation to regional tectonics[J]. J Geophys Res,124(5):1–15. doi: 10.1029/2018JB016822
|
Etiope G,Martinelli G. 2002. Migration of carrier and trace gases in the geosphere:An overview[J].Phys Earth Planet Inter,129(3/4):185–204.
|
Faulkner D R,Lewis A C,Rutter E H. 2003. On the internal structure and mechanics of large strike-slip fault zones:Field observations of the Carboneras fault in southeastern Spain[J]. Tectonophysics,367(3/4):235–251.
|
Finizola A,Aubert M,Revil A,Schütze C,Sortino F. 2009. Importance of structural history in the summit area of Stromboli during the 2002−2003 eruptive crisis inferred from temperature,soil CO2,self-potential,and electrical resistivity tomography[J]. J Volcanol Geoth Res,183(3/4):213–227.
|
Fu C C,Yang T F,Chen C H,Lee L C,Wu Y M,Liu T K,Walia V,Kumar A,Lai T H. 2017. Spatial and temporal anomalies of soil gas in northern Taiwan and its tectonic and seismic implications[J]. J Asian Earth Sci,149:64–77. doi: 10.1016/j.jseaes.2017.02.032
|
Ghosh D,Deb A,Sengupta R. 2009. Anomalous radon emission as precursor of earthquake[J]. J Appl Geophys,69(2):67–81. doi: 10.1016/j.jappgeo.2009.06.001
|
Giammanco S,Immè G,Mangano G,Morelli D,Neri M. 2009. Comparison between different methodologies for detecting radon in soil along an active fault:The case of the Pernicana fault system,Mt. Etna (Italy)[J]. Appl Radiat Isotopes,67(1):178–185. doi: 10.1016/j.apradiso.2008.09.007
|
Han X,Li Y,Du J,Zhou X,Xie C,Zhang W. 2014. Rn and CO2 geochemistry of soil gas across the active fault zones in the capital area of China[J]. Nat Hazards Earth Syst Sci,14(10):2803–2815. doi: 10.5194/nhess-14-2803-2014
|
Irwin W P,Barnes I. 1980. Tectonic relations of carbon dioxide discharges and earthquakes[J]. J Geophys Res,85(B6):3115–3121. doi: 10.1029/JB085iB06p03115
|
Italiano F,Bonfanti P,Ditta M,Petrini R,Slejko F. 2009. Helium and carbon isotopes in the dissolved gases of Friuli region (NE Italy):Geochemical evidence of CO2 production and degassing over a seismically active area[J]. Chem Geol,266(1/2):76–85.
|
King C Y. 1986. Gas geochemistry applied to earthquake prediction:An overview[J]. J Geophys Res,91(B12):12269–12281. doi: 10.1029/JB091iB12p12269
|
King C Y,King B S,Evans W C,Zhang W. 1996. Spatial radon anomalies on active faults in California[J]. Appl Geochem,11(4):497–510. doi: 10.1016/0883-2927(96)00003-0
|
Lehmann B E,Lehmann M,Neftel A,Tarakanov S V. 2000. Radon-222 monitoring of soil diffusivity[J]. Geophys Res Lett,27(23):3917–3920. doi: 10.1029/1999GL008469
|
Lehmann B E,Ihly B,Salzmann S,Conen F,Simon E. 2004. An automatic static chamber for continuous 220Rn and 222Rn flux measurements from soil[J]. Radiat Meas,38(1):43–50. doi: 10.1016/j.radmeas.2003.08.001
|
Li Y,Du J G,Wang X,Zhou X C,Xie C,Cui Y J. 2013. Spatial variations of soil gas geochemistry in the Tangshan area of northern China[J]. Terr Atmos Ocean Sci,24(3):323–332. doi: 10.3319/TAO.2012.11.26.01(TT)
|
Ma X X,Zheng G D,Liang S Y,Xu W. 2015. Geochemical characteristics of absorbed gases in fault gouge from the Daliushu Dam area,NW China[J]. Geochem J,49(4):413–419. doi: 10.2343/geochemj.2.0365
|
Papp B,Deák F,Horváth Á,Kiss Á,Rajnai G,Szabó C. 2008. A new method for the determination of geophysical parameters by radon concentration measurements in bore-hole[J]. J Environ Radioactiv,99(11):1731–1735. doi: 10.1016/j.jenvrad.2008.05.005
|
Revil A,Finizola A,Sortino F,Ripepe M. 2004. Geophysical investigations at Stromboli volcano,Italy:Implications for ground water flow and paroxysmal activity[J]. Geophys J Int,157(1):426–440. doi: 10.1111/j.1365-246X.2004.02181.x
|
Schütze C,Vienken T,Werban U,Dietrich P,Finizola A,Leven C. 2012. Joint application of geophysical methods and direct push-soil gas surveys for the improved delineation of buried fault zones[J]. J Appl Geophys,82:129–136. doi: 10.1016/j.jappgeo.2012.03.002
|
Seminsky K Z,Bobrov A A. 2009. Radon activity of faults (western Baikal and southern Angara areas)[J]. Russ Geol Geophys,50(8):682–692. doi: 10.1016/j.rgg.2008.12.010
|
Seminsky K Z,Demberel S. 2013. The first estimations of soil-radon activity near faults in Central Mongolia[J]. Radiat Meas,49(1):19–34.
|
Seminsky K Z,Bobrov A A,Demberel S. 2014. Variations in radon activity in the crustal fault zones:Spatial characteristics[J]. Izv-Phys Solid Eart+,50(6):795–813. doi: 10.1134/S1069351314060081
|
Sun X L,Yang P T,Xiang Y,Si X Y,Liu D Y. 2018. Across-fault distributions of radon concentrations in soil gas for different tectonic environments[J]. Geosci J,22(2):227–239. doi: 10.1007/s12303-017-0028-2
|
Toutain J P,Baubron J C. 1999. Gas geochemistry and seismotectonics:A review[J]. Tectonophysics,304(1/2):1–27.
|
Wang D Y,He L,Shi X J,Wei S Q,Feng X B. 2006. Release flux of mercury from different environmental surfaces in Chongqing,China[J]. Chemosphere,64(11):1845–1854. doi: 10.1016/j.chemosphere.2006.01.054
|
Winkler R,Ruckerbauer F,Bunzl K. 2001. Radon concentration in soil gas:A comparison of the variability resulting from different methods,spatial heterogeneity and seasonal fluctuations[J]. Sci Total Environ,272(1/3):273–282.
|
Woodruff L G,Cannon W F,Eberl D D,Smith D B,Kilburn J E,Horton J D,Garrett R G,Klassen R A. 2009. Continental-scale patterns in soil geochemistry and mineralogy:Results from two transects across the United States and Canada[J]. Appl Geochem,24(8):1369–1381. doi: 10.1016/j.apgeochem.2009.04.009
|
Yang Y,Li Y,Guan Z J,Chen Z,Zhang L,Lü C J,Sun F X. 2018. Correlations between the radon concentrations in soil gas and the activity of the Anninghe and the Zemuhe faults in Sichuan,southwestern of China[J]. Appl Geochem,89:23–33. doi: 10.1016/j.apgeochem.2017.11.006
|
Zarroca M,Linares R,Bach J,Roqué C,Moreno V,Font L,Baixeras C. 2012. Integrated geophysics and soil gas profiles as a tool to characterize active faults:The Amer fault example (Pyrenees,NE Spain)[J].Environ Earth Sci,67(3):889–910. doi: 10.1007/s12665-012-1537-y
|
Zheng G D,Fu B H,Takahashi Y,Miyahara M,Kuno A,Matsuo M,Miyashita Y. 2008. Iron speciation in fault gouge from the Ushikubi fault zone central Japan[J]. Hyperfine Interact,186(1/3):39–52.
|
Zheng G D,Xu S,Liang S Y,Shi P L,Zhao J. 2013. Gas emission from the Qingzhu River after the 2008 Wenchuan earthquake,Southwest China[J]. Chem Geol,339:187–193. doi: 10.1016/j.chemgeo.2012.10.032
|
Zhou X C,Du J G,Chen Z,Cheng J W,Tang Y,Yang L M,Xie C,Cui Y J,Liu L,Yi L,Yang P X,Li Y. 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan MS8.0 earthquake,southwestern China[J]. Geochem Trans,11(1):5. doi: 10.1186/1467-4866-11-5
|
Zhou X C,Chen Z,Cui Y J. 2016. Environmental impact of CO2,Rn,Hg degassing from the rupture zones produced by Wenchuan MS8.0 earthquake in western Sichuan,China[J]. Environ Geochem Health,38(5):1067–1082. doi: 10.1007/s10653-015-9773-1
|