Li Wei, Ding Zhifeng, Sun Weijia. 2019: Structure of lithospheric discontinuities beneath the southeast margin of Tibetan Plateau revealed by seismic daylight imaging and its dynamic significance. Acta Seismologica Sinica, 41(5): 549-568. DOI: 10.11939/jass.20190037
Citation: Li Wei, Ding Zhifeng, Sun Weijia. 2019: Structure of lithospheric discontinuities beneath the southeast margin of Tibetan Plateau revealed by seismic daylight imaging and its dynamic significance. Acta Seismologica Sinica, 41(5): 549-568. DOI: 10.11939/jass.20190037

Structure of lithospheric discontinuities beneath the southeast margin of Tibetan Plateau revealed by seismic daylight imaging and its dynamic significance

More Information
  • Received Date: February 20, 2019
  • Revised Date: June 13, 2019
  • Available Online: September 25, 2019
  • Published Date: August 31, 2019
  • In order to further understand the dynamic problems such as tectonic evolution and deep seismogenic mechanism of the southeastern margin of the Tibetan Plateau, the structure of the lithospheric discontinuity was obtained by seismic daylight imaging based on teleseismic P-wave waveform data recorded by stations of China Seismological Science Array Exploration Project located in the region, and the accuracy and stability of the method were also discussed. The results show that the lithospheric thickness in the southeastern margin of the Tibetan Plateau is thinner in the west and thicker in the east. The thinnest lithospheric thickness near Tengchong volcano in Yunnan-Myanmar-Thailand block is about 60 km. The thinner lithosphere may be caused by the upwelling of asthenosphere mantle material. The lithospheric thickness of the Yangtze block is gradually thinning from Sichuan basin to the south, especially the thickest beneath the Sichuan basin, whose lithospheric thickness can reach about 190 km. Meanwhile, obvious discontinuities have been detected at a depth of about 150 km beneath Tengchong volcano, which may be the original magma source of volcano. The continuity of the structure of the Indo-China block and the Yunnan-Myanmar-Thailand block further provides seismological evidence for the eastward spillover of low-velocity materials from Tengchong volcano caused by the pushing of the Indian Plate. The northernmost section of the studied area shows that there are obvious local high-velocity variations in the depth range of 50−250 km within the Emeishan Large Igneous Province and the crust above it. The uneven distribution characteristics may be related to the magma bottom intrusion during the Permian volcanic eruption and the multiple tectonic activities since the Mesozoic and Cenozoic.
  • 高名修. 1996. 青藏高原东南缘现今地球动力学研究[J]. 地震地质,18(2):129–142.
    Gao M X. 1996. A study on recent geodynamics at the southeastern margin of the Qinghai-Xizang (Tibet) Plateau[J]. Seismology and Geology,18(2):129–142 (in Chinese).
    阚荣举,赵晋明,阚丹. 1996. 腾冲火山地热区的构造演化与火山喷发[J]. 地震地磁观测与研究,17(4):28–33.
    Kan R J,Zhao J M,Kan D. 1996. The tectonic evolution and volcanic eruption in Tengchong volcanogeothermic region[J]. Seismological and Geomagnetic Observation and Research,17(4):28–33 (in Chinese).
    李永华,吴庆举,田小波,张瑞青,潘佳铁,曾融生. 2009. 用接收函数方法研究云南及其邻区地壳上地幔结构[J]. 地球物理学报,52(1):67–80.
    Li Y H,Wu Q J,Tian X B,Zhang R Q,Pan J T,Zeng R S. 2009. Crustal structure in the Yunnan region determined by modeling receiver functions[J]. Chinese Journal of Geophysics,52(1):67–80 (in Chinese).
    刘福田,曲克信,吴华,李强,刘建华,胡戈. 1989. 中国大陆及其邻近地区的地震层析成象[J]. 地球物理学报,32(3):281–291. doi: 10.3321/j.issn:0001-5733.1989.03.005
    Liu F T,Qu K X,Wu H,Li Q,Liu J H,Hu G. 1989. Seismic tomography of the Chinese continent and adjacent region[J]. Acta Geophysica Sinica,32(3):281–291 (in Chinese).
    穆治国,佟伟,Curtis G H. 1987. 腾冲火山活动的时代和岩浆来源问题[J]. 地球物理学报,30(3):261–270. doi: 10.3321/j.issn:0001-5733.1987.03.005
    Mu Z G,Tong W,Curtis G H. 1987. Times of volcanic activity and origin of magma in Tengchong geothermal area,west Yunnan Province[J]. Acta Geophysica Sinica,30(3):261–270 (in Chinese).
    潘佳铁,李永华,吴庆举,丁志峰. 2015. 青藏高原东南部地区瑞雷波相速度层析成像[J]. 地球物理学报,58(11):3993–4006.
    Pan J T,Li Y H,Wu Q J,Ding Z F. 2015. Phase velocity maps of Rayleigh waves in the southeast Tibetan Plateau[J]. Chinese Journal of Geophysics,58(11):3993–4006 (in Chinese).
    乔学军,王琪,杜瑞林. 2004. 川滇地区活动地块现今地壳形变特征[J]. 地球物理学报,47(5):805–811. doi: 10.3321/j.issn:0001-5733.2004.05.011
    Qiao X J,Wang Q,Du R L. 2004. Characteristics of current crustal deformation of active blocks in the Sichuan-Yunnan region[J]. Chinese Journal of Geophysics,47(5):805–811 (in Chinese).
    孙若昧,刘福田,刘建华. 1991. 四川地区的地震层析成像[J]. 地球物理学报,34(6):708–719. doi: 10.3321/j.issn:0001-5733.1991.06.005
    Sun R W,Liu F T,Liu J H. 1991. Seismic tomography of Sichuan[J]. Acta Geophysica Sinica,34(6):708–719 (in Chinese).
    孙伟家,符力耘,魏伟,唐清雅. 2019. 探测岩石圈间断面精细结构的地震光照成像新方法[J]. 中国科学: 地球科学,49(3):521–536.
    Sun W J,Fu L Y,Wei W,Tang Q Y. 2019. A new seismic daylight imaging method for determining the structure of lithospheric discontinuity[J]. Science China Earth Sciences,49(3):521–636 (in Chinese).
    王夫运,潘素珍,刘兰,刘宝峰,张建狮,邓晓果,马策军,张彩军. 2014. 玉溪—临沧剖面宽角地震探测:红河断裂带及滇南地壳结构研究[J]. 地球物理学报,57(10):3247–3258. doi: 10.6038/cjg20141013
    Wang F Y,Pan S Z,Liu L,Liu B F,Zhang J S,Deng X G,Ma C J,Zhang C J. 2014. Wide angle seismic exploration of Yuxi-Lincang profile:The research of crustal structure of the Red River fault zone and southern Yunnan[J]. Chinese Journal of Geophysics,57(10):3247–3258 (in Chinese).
    王雅明,佟殿君,任建业. 2007. 印支地块的逃逸旋转与莺歌海盆地的发育演化[J]. 断块油气田,14(2):33–35. doi: 10.3969/j.issn.1005-8907.2007.02.011
    Wang Y M,Tong D J,Ren J Y. 2007. Extrusion and rotation of Indo-China block and development and evolutional process of Yinggehai Basin,South China Sea[J]. Fault-Block Oil and Gas Field,14(2):33–35 (in Chinese).
    吴建平,杨婷,王未来,明跃红,张天中. 2013. 小江断裂带周边地区三维P波速度结构及其构造意义[J]. 地球物理学报,56(7):2257–2267. doi: 10.6038/cjg20130713
    Wu J P,Yang T,Wang W L,Ming Y H,Zhang T Z. 2013. Three dimensional P-wave velocity structure around Xiaojiang fault system and its tectonic implications[J]. Chinese Journal of Geophysics,56(7):2257–2267 (in Chinese).
    吴庆举,曾融生. 1998. 用宽频带远震接收函数研究青藏高原的地壳结构[J]. 地球物理学报,41(5):669–679. doi: 10.3321/j.issn:0001-5733.1998.05.010
    Wu Q J,Zeng R S. 1998. The crustal structure of Qinghai-Xizang Plateau inferred from broadband teleseismic waveform[J]. Acta Geophysica Sinica,41(5):669–679 (in Chinese).
    徐强,赵俊猛,崔仲雄,刘明乾. 2009. 利用接收函数研究青藏高原东南缘的地壳上地幔结构[J]. 地球物理学报,52(12):3001–3008. doi: 10.3969/j.issn.0001-5733.2009.12.009
    Xu Q,Zhao J M,Cui Z X,Liu M Q. 2009. Structure of the crust and upper mantle beneath the southeastern Tibetan Plateau by P and S receiver functions[J]. Chinese Journal of Geophysics,52(12):3001–3008 (in Chinese).
    徐涛,张忠杰,刘宝峰,陈赟,张明辉,田小波,徐义刚,滕吉文. 2015. 峨眉山大火成岩省地壳速度结构与古地幔柱活动遗迹: 来自丽江—清镇宽角地震资料的约束[J]. 中国科学: 地球科学,45(5):561–576.
    Xu T,Zhang Z J,Liu B F,Chen Y,Zhang M H,Tian X B,Xu Y G,Teng J W. 2015. Crustal velocity structure in the Emeishan Large Igneous Province and evidence of the Permian mantle plume activity[J]. Science China Earth Sciences,58(7):1133–1147. doi: 10.1007/s11430-015-5094-6
    徐义刚,钟孙霖. 2001. 峨眉山大火成岩省: 地幔柱活动的证据及其熔融条件[J]. 地球化学,30(1):1–9. doi: 10.3321/j.issn:0379-1726.2001.01.002
    Xu Y G,Zhong S L. 2001. The Emeishan Large Igneous Province:Evidence for mantle plume activity and melting conditions[J]. Geochimica,30(1):1–9 (in Chinese).
    杨晓涛,胥颐,刘建华,李志伟. 2011. 腾冲火山区的地震层析成像及其构造意义[J]. 地球物理学报,54(8):2050–2059. doi: 10.3969/j.issn.0001-5733.2011.08.012
    Yang X T,Xu Y,Liu J H,Li Z W. 2011. Seismic tomography in the Tengchong volcanic area and its tectonic implication[J]. Chinese Journal of Geophysics,54(8):2050–2059 (in Chinese).
    张风雪,吴庆举,丁志峰. 2018. 青藏高原东部P波速度结构及其对高原隆升的启示[J]. 科学通报,63(19):1949–1961.
    Zhang F X,Wu Q J,Ding Z F. 2018. A P-wave velocity study beneath the eastern region of Tibetan Plateau and its implication for plateau growth[J]. Chinese Science Bulletin,63(19):1949–1961 (in Chinese). doi: 10.1360/N972018-00337
    张忠杰,陈赟,田小波. 2009. 青藏高原东缘地壳上地幔结构及其动力学意义[J]. 地质科学,44(4):1136–1150. doi: 10.3321/j.issn:0563-5020.2009.04.009
    Zhang Z J,Chen Y,Tian X B. 2009. Crust-upper mantle structure on the eastern margin of Tibet Plateau and its geodynamic implications[J]. Chinese Journal of Geology,44(4):1136–1150 (in Chinese).
    郑晨,丁志峰,宋晓东. 2016. 利用面波频散与接收函数联合反演青藏高原东南缘地壳上地幔速度结构[J]. 地球物理学报,59(9):3223–3236. doi: 10.6038/cjg20160908
    Zheng C,Ding Z F,Song X D. 2016. Joint inversion of surface wave dispersion and receiver functions for crustal and uppermost mantle structure in southeast Tibetan Plateau[J]. Chinese Journal of Geophysics,59(9):3223–3236 (in Chinese).
    Bai D H,Unsworth M J,Meju M A,Ma X B,Teng J W,Kong X R,Sun Y,Sun J,Wang L F,Jiang C S,Zhao C P,Xiao P F,Liu M. 2010. Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging[J]. Nat Geosci,3(5):358–362. doi: 10.1038/ngeo830
    Bao X W,Sun X X,Xu M J,Eaton D W,Song X D,Wang L S,Ding Z F,Mi N,Li H,Yu D Y,Huang Z C,Wang P. 2015. Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions[J]. Earth Planet Sci Lett,415:16–24. doi: 10.1016/j.jpgl.2015.01.020
    Copley A. 2008. Kinematics and dynamics of the southeastern margin of the Tibetan Plateau[J]. Geophys J Int,174(3):1081–1100. doi: 10.1111/j.1365-246X.2008.03853.x
    Courtillot V,Jaupart C,Manighetti I,Tapponnier P,Besse J. 1999. On causal links between flood basalts and continental breakup[J]. Earth Planet Sci Lett,166(3/4):177–195.
    Farra V,Vinnik L. 2000. Upper mantle stratification by P and S receiver functions[J].Geophys J Int,141(3):699–712. doi: 10.1046/j.1365-246x.2000.00118.x
    Ford H A,Fischer K M,Abt D L,Rychert C A,Elkins-Tanton L T. 2010. The lithosphere-asthenosphere boundary and cratonic lithospheric layering beneath Australia from Sp wave imaging[J]. Earth Planet Sci Lett,300(3/4):299–310.
    Fu Y Y,Gao Y,Li A B,Li L,Chen A G. 2017. Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography[J]. J Geophys Res,122(6):4631–4644. doi: 10.1002/2016JB013096
    Houston H. 2001. Influence of depth,focal mechanism,and tectonic setting on the shape and duration of earthquake source time functions[J]. J Geophys Res,106(B6):11137–11150. doi: 10.1029/2000JB900468
    Hu J F,Yang H Y,Xu X Q,Wen L M,Li G Q. 2012. Lithospheric structure and crust-mantle decoupling in the southeast edge of the Tibetan Plateau[J]. Gondwana Res,22(3/4):1060–1067.
    Huang Z C,Wang P,Xu M J,Wang L S,Ding Z F,Wu Y,Xu M J,Mi N,Yu D Y,Li H. 2015. Mantle structure and dynamics beneath SE Tibet revealed by new seismic images[J]. Earth Planet Sci Lett,411:100–111. doi: 10.1016/j.jpgl.2014.11.040
    Kennett B L N. 2015. Lithosphere-asthenosphere P-wave reflectivity across Australia[J]. Earth Planet Sci Lett,431:225–235. doi: 10.1016/j.jpgl.2015.09.039
    Kennett B L N,Engdahl E R,Buland R. 1995. Constraints on seismic velocities in the Earth from traveltimes[J]. Geophys J Int,122(1):108–124. doi: 10.1111/j.1365-246X.1995.tb03540.x
    Kumar M R,Bostock M G. 2006. Transmission to reflection transformation of teleseismic wavefields[J]. J Geophys Res,111(B8):B08306.
    Langston C A. 1979. Structure under Mount Rainier,Washington,inferred from teleseismic body waves[J]. J Geophys Res,84(B9):4749–4762. doi: 10.1029/JB084iB09p04749
    Sun W J,Kennett B L N. 2016. Receiver structure from teleseisms: Autocorrelation and cross correlation[J]. Geophys Res Lett,43(12):6234–6242. doi: 10.1002/2016GL069564
    Sun W J,Kennett B L N. 2017. Mid-lithosphere discontinuities beneath the western and central North China Craton[J]. Geophys Res Lett,44:1302–1310.
    Sun W J,Fu L Y,Saygin E,Zhao L. 2018. Insights into layering in the cratonic lithosphere beneath western Australia[J]. J Geophys Res,123(2):1405–1418. doi: 10.1002/2017JB014904
    Sun X X,Bao X W,Xu M J,Eaton D W,Song X D,Wang L S,Ding Z F,Mi N,Yu D Y,Li H. 2014. Crustal structure beneath SE Tibet from joint analysis of receiver functions and Rayleigh wave dispersion[J]. Geophys Res Lett,41(5):1479–1484. doi: 10.1002/2014GL059269
    Sun Y,Niu F L,Liu H F,Chen Y L,Liu J X. 2012. Crustal structure and deformation of the SE Tibetan Plateau revealed by receiver function data[J]. Earth Planet Sci Lett,349/350:186–197. doi: 10.1016/j.jpgl.2012.07.007
    Vinnik L P. 1977. Detection of waves converted from P to SV in the mantle[J]. Phys Earth Planet Inter,15(1):39–45. doi: 10.1016/0031-9201(77)90008-5
    Vinnik L P,Avetisjan R A,Mikhailova N G. 1983. Heterogeneities in the mantle transition zone from observations of P-to-SV converted waves[J]. Phys Earth Planet Inter,33(3):149–163. doi: 10.1016/0031-9201(83)90117-6
    Wang Y. 2001. Heat flow pattern and lateral variations of lithosphere strength in China mainland:Constraints on active deformation[J]. Phys Earth Planet Inter,126(3/4):121–146.
    Wu T F,Zhang S X,Li M K,Qin W B,Zhang C Y. 2016. Two crustal flowing channels and volcanic magma migration underneath the SE margin of the Tibetan Plateau as revealed by surface wave tomography[J]. J Asian Earth Sci,132:25–39. doi: 10.1016/j.jseaes.2016.09.017
    Xu L L,Rondenay S,van der Hilst R D. 2007. Structure of the crust beneath the southeastern Tibetan Plateau from teleseismic receiver functions[J]. Phys Earth Planet Inter,165(3/4):176–193.
    Xu Y G,Chung S L,Jahn B M,Wu G Y. 2001. Petrologic and geochemical constraints on the petrogenesis of Permian-Triassic Emeishan flood basalts in southwestern China[J]. Lithos,58(3/4):145–168.
    Yang H Y,Peng H C,Hu J F. 2017. The lithospheric structure beneath southeast Tibet revealed by P and S receiver functions[J]. J Asian Earth Sci,138:62–71. doi: 10.1016/j.jseaes.2017.02.001
    Zhang F X,Wu Q J,Li Y H,Zhang R Q,Sun L,Pan J T,Ding Z F. 2018. Seismic tomography of eastern Tibet: Implications for the Tibetan Plateau growth[J]. Tectonics,37(9):2833–2847. doi: 10.1029/2018TC004977
  • Related Articles

Catalog

    Article views (1312) PDF downloads (142) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return