Lin Binhua, Jin Xing, Chen Huifang, Liao Shirong, Huang Lingzhu, Zhang Yanming, Wu Lihua. 2019: Analysis and revision of magnitude ML deviation between Fujian and Taiwan based on BP neural network. Acta Seismologica Sinica, 41(6): 723-734. DOI: 10.11939/jass.20190038
Citation: Lin Binhua, Jin Xing, Chen Huifang, Liao Shirong, Huang Lingzhu, Zhang Yanming, Wu Lihua. 2019: Analysis and revision of magnitude ML deviation between Fujian and Taiwan based on BP neural network. Acta Seismologica Sinica, 41(6): 723-734. DOI: 10.11939/jass.20190038

Analysis and revision of magnitude ML deviation between Fujian and Taiwan based on BP neural network

More Information
  • Received Date: February 20, 2019
  • Revised Date: May 16, 2019
  • Available Online: December 15, 2019
  • Published Date: October 31, 2019
  • In this paper, the shallow earthquake events in Taiwan island from 2012 to 2018 were used for analyses on magnitude deviation measured by Taiwan Weather Bureau (TWB) and Fujian Seismic Network Center (FSNC). The result shows the differences in magnitude between Taiwan region and Fujian region were affected by magnitude value, focal depth and geographic location. And then we made linear regressions for magnitude ML of the earthquakes measured by TWB and FSNC, respectively. In the meanwhile, a BP neural network with 4−9−9−9−4 five-layer model was introduced into the prediction training of these two regions. For the model, the Taiwan earthquakes in 2012−2017 were taken as training set, and the events in 2018 were used as the testing set. After the revision of BP neural network, the deviation values of magnitude were basically controlled within −0.4 to 0.3, which is better than those from the traditional linear regression method, especially for multiple earthquakes and minority earthquakes. Furthermore, the testing results also validate the abilities of non-linear data fitting and generalization.
  • 陈运泰,刘瑞丰. 2004. 地震的震级[J]. 地震地磁观测与研究,25(6):1–12. doi: 10.3969/j.issn.1003-3246.2004.06.001
    Chen Y T,Liu R F. 2004. Earthquake magnitude[J]. Seismological and Geomagnetic Observation and Research,25(6):1–12 (in Chinese).
    杜百灵. 2018. 地震多属性BP神经网络法在预测煤层厚度上的应用研究[J]. 工程地球物理学报,15(2):246–251. doi: 10.3969/j.issn.1672-7940.2018.02.020
    Du B L. 2018. Application of seismic multi attribute BP neural network in prediction of coal seam thickness[J]. Chinese Journal of Engineering Geophysics,15(2):246–251 (in Chinese).
    傅再扬,李祖宁,丁学仁,吴绍祖. 2008. 福建和台湾地震台网测定地震震级差异研究[J]. 地震研究,31(1):32–36. doi: 10.3969/j.issn.1000-0666.2008.01.006
    Fu Z Y,Li Z N,Ding X R,Wu S Z. 2008. Difference research on magnitude determined by Fujian Seismic Networks and Taiwan’s[J]. Journal of Seismological Research,31(1):32–36 (in Chinese).
    蒋宗礼. 2001. 人工神经网络导论[M]. 北京: 高等教育出版社: 1−114.
    Jiang Z L. 2001. Introduction to Artificial Neural Networks[M]. Beijing: Higher Education Press: 1−114 (in Chinese).
    李善邦. 1981. 中国地震[M]. 北京: 地震出版社: 120−156.
    Li S B. 1981. Earthquakes in China[M]. Beijing: Seismological Press: 120−156 (in Chinese).
    李军,金星,郭阳. 2016. 福建台网测定台湾地震震级偏差研究[J]. 自然灾害学报,25(3):143–152.
    Li J,Jin X,Guo Y. 2016. Study on the earthquake magnitude deviation in Taiwan region measured by Fujian Seismic Network[J]. Journal of Natural Disasters,25(3):143–152 (in Chinese).
    刘瑞丰,陈运泰,任枭,徐志国,孙丽,杨辉,梁建宏,任克新. 2007. 中国地震台网震级的对比[J]. 地震学报,29(5):467–476. doi: 10.3321/j.issn:0253-3782.2007.05.003
    Liu R F,Chen Y T,Ren X,Xu Z G,Sun L,Yang H,Liang J H,Ren K X. 2007. Comparison between different earthquake magnitudes determined by China Seismograph Network[J]. Acta Seismologica Sinica,29(5):467–476 (in Chinese).
    刘瑞丰, 陈运泰, 任枭, 徐志国, 王晓欣, 邹立晔, 张立文. 2015. 震级的测定[M]. 北京: 地震出版社: 1−137.
    Liu R F, Chen Y T, Ren X, Xu Z G, Wang X X, Zou L Y, Zhang L W. 2015. Magnitude Measurement[M]. Beijing: Seismological Press: 1−137 (in Chinese).
    刘瑞丰,陈运泰,薛峰,李恩来. 2108. 如何正确使用新的震级国家标准[J]. 地震地磁观测与研究,39(4):1–10.
    Liu R F,Chen Y T,Xue F,Li E L. 2018. How to use the new national standard of magnitude correctly[J]. Seismological and Geomagnetic Observation and Research,39(4):1–10 (in Chinese).
    唐淋,祁国亮,苏金蓉,黄春梅,傅莺,颜利君. 2018. 新国家标准震级标度与传统震级标度对比研究[J]. 地震学报,40(2):121–131.
    Tang L,Qi G L,Su J R,Huang C M,Fu Y,Yan L J. 2018. Comparison of the new national standard magnitude scales with the traditional magnitude scales[J]. Acta Seismologica Sinica,40(2):121–131 (in Chinese).
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2017. GB 17740—2017地震震级的规定[S]. 北京: 中国标准出版社: 5−13.
    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China. 2017. GB 17740−2017 General Ruler For Earthquake Magnitude[S]. Beijing: Standards Press of China: 5−13 (in Chinese).
    Duda R O, Haet P E, Stork D G. 2000. Pattern Classification[M]. Hoboken: Wiley-Interscience: 1−654.
    Haykin S. 2008. Neural Networks and Learning Machines[M]. New Jersey: Prentice Hall Inc: 1−935.
    Mitchell T M. 1997. Machine Learning[M]. New York: McGraw-Hill Education.
    Richter C F. 1935. An instrumental earthquake magnitude scale[J]. Bull Seismol Soc Am,25(1):1–32.
    Shin T C. 1993. The calculation of local magnitude from the simulated Wood-Anderson seismograms of the short-period seismograms in the Taiwan area[J]. Terrest Atmos Oceanic Sci,4(2):155–170. doi: 10.3319/TAO.1993.4.2.155(T)
  • Related Articles

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (1796) PDF downloads (45) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return