Citation: | Qiao F,Bo J S,Zhang Z P,Chang C Y,Wang L. 2020. Correlation between shear wave velocity and buried depth of common soils in Liuzhou city of Guangxi region. Acta Seismologica Sinica,42(1):109−119. doi:10.11939/jass.20190062. DOI: 10.11939/jass.20190062 |
Based on the measured borehole data in the earthquake safety assessment of Liuzhou region, Guangxi, three models (linear, power function, quadratic function models) were used to fit and analyze the correlation between shear wave velocity of soil layer and burial depth in this area. And then the power function model was selected to analyze the correlation between the depth of the soil layer and corresponding shear wave velocity in the area, and the influence of the soil state on the correlation between the two parameters was also discussed, and finally the actual drilling was taken as an example to verify the accuracy and reliability of the model. The obtained results are as follows: ① except artificial filling, there is a strong correlation between the shear wave velocity and the buried depth of common soils in the area, and the correlation can be affected by the region where it is; ② the soil state can significantly improve the prediction accuracy of the model.
蔡宗文. 2003. 福建沿海剪切波速与土层参数定量关系研究[J]. 华南地震,23(3):76–80. doi: 10.3969/j.issn.1001-8662.2003.03.011
|
Cai Z W. 2003. The quantitative analysis between shear wave velocity and soil-layer parameters in Fujian coastal areas[J]. South China Journal of Seismology,23(3):76–80 (in Chinese).
|
陈国兴,徐建龙,袁灿勤. 1998. 南京城区岩土体剪切波速与土层深度的关系[J]. 南京建筑工程学院学报,45(2):32–37.
|
Chen G X,Xu J L,Yuan C Q. 1998. Relation between depth and shear wave velocity of soil and bedrock in Nanjing city[J]. Journal of Nanjing Architectural and Civil Engineering Institute,45(2):32–37 (in Chinese).
|
程祖锋,李萍,李燕,张桂珍. 1997. 深圳地区部分岩土类型剪切波速与深度的关系分析[J]. 工程地质学报,5(2):161–168.
|
Cheng Z F,Li P,Li Y,Zhang G Z. 1997. Analysis of relationship between shear wave velocity and depth of some types of soil and rock in Shenzhen region[J]. Journal of Engineering Geology,5(2):161–168 (in Chinese).
|
丁国瑜,卢演俦. 1983. 华北地块新构造变形基本特点的讨论[J]. 华北地震科学,1(2):1–9.
|
Ding G Y,Lu Y C. 1983. Discussion on the basic characteristics of new tectonic deformation in North China block[J]. North China Earthquake Sciences,1(2):1–9 (in Chinese).
|
国家技术监督局, 中华人民共和国建设部. 1995. GB 50191—1993 构筑物抗震设计规范[S]. 北京: 中国计划出版社: 11−13.
|
State Bureau of Technology Supervision, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 1995. GB 50191−1993 Design Code for Antiseismic of Special Structures[S]. Beijing: China Planning Press: 11−13 (in Chinese).
|
贺为民,刘明军,杨杰. 2016. 土层剪切波速与埋深关系统计分析和应用[J]. 地震地质,38(4):937–949. doi: 10.3969/j.issn.0253-4967.2016.04.011
|
He W M,Liu M J,Yang J. 2016. Application and statistical analysis of relationship between shear wave velocity and depth of soil-layers[J]. Seismology and Geology,38(4):937–949 (in Chinese).
|
兰景岩,薄景山,吕悦军. 2007. 剪切波速对设计反应谱的影响研究[J]. 震灾防御技术,2(1):19–24. doi: 10.3969/j.issn.1673-5722.2007.01.003
|
Lan J Y,Bo J S,Lü Y J. 2007. Study on the effect of shear wave velocity on the design spectrum[J]. Technology for Earthquake Disaster Prevention,2(1):19–24 (in Chinese).
|
李帅,赵纯青,唐丽华. 2012. 剪切波速在判定石河子市某建设场地类别中的应用[J]. 内陆地震,26(2):180–186. doi: 10.3969/j.issn.1001-8956.2012.02.009
|
Li S,Zhao C Q,Tang L H. 2012. Application on judgment of construction site classification in Shihezi with shear wave velocity[J]. Inland Earthquake,26(2):180–186 (in Chinese).
|
刘华贵,蒋文宇. 2015. 柳州官塘片区红粘土剪切波速与埋深的相关性分析[J]. 地震研究,38(2):280–284.
|
Liu H G,Jiang W Y. 2015. Correlative analysis between shear wave velocity and depth of red clay in Liuzhou Guantang region[J]. Journal of Seismological Research,38(2):280–284 (in Chinese).
|
刘红帅,郑桐,齐文浩,兰景岩. 2010. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报,32(7):1142–1149.
|
Liu H S,Zheng T,Qi W H,Lan J Y. 2010. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering,32(7):1142–1149 (in Chinese).
|
齐鑫,丁浩. 2012. 下辽河平原区剪切波速与土层埋深关系分析[J]. 世界地震工程,28(3):151–156. doi: 10.3969/j.issn.1007-6069.2012.03.027
|
Qi X,Ding H. 2012. Analysis of relationship between shear wave velocity and depth of soil layers in downstream Liaohe River plain[J]. World Earthquake Engineering,28(3):151–156 (in Chinese).
|
邱志刚,薄景山,罗奇峰. 2011. 土壤剪切波速与埋深关系的统计分析[J]. 世界地震工程,27(3):81–88.
|
Qiu Z G,Bo J S,Luo Q F. 2011. Statistical analysis of relationship between shear wave velocity and depth of soil[J]. World Earthquake Engineering,27(3):81–88 (in Chinese).
|
王强,王兰民,吴志坚,王平. 2014. 天水市岩土体剪切波速与埋深的变化关系[J]. 地震工程与工程振动,34(增刊1):247–252.
|
Wang Q,Wang L M,Wu Z J,Wang P. 2014. Relationship between shear wave velocity and depth of soils and rocks in Tianshui city[J]. Earthquake Engineering and Engineering Dynamics,34(S1):247–252 (in Chinese).
|
汪闻韶. 1994. 土工地震减灾工程中的一个重要参量:剪切波速[J]. 水利学报,25(3):80–84. doi: 10.3321/j.issn:0559-9350.1994.03.012
|
Wang W S. 1994. An important parameter in geotechnical engineering for earthquake disaster mitigation:Shear wave velocity[J]. Journal of Hydraulic Engineering,25(3):80–84 (in Chinese).
|
张龙飞,董斌,史双双,韩晓飞. 2018. 朔州市区土层剪切波速与埋深的统计关系[J]. 华北地震科学,36(2):28–37. doi: 10.3969/j.issn.1003-1375.2018.02.005
|
Zhang L F,Dong B,Shi S S,Han X F. 2018. Shear wave velocity and depth of soil layer in Shuozhou city of Datong basin[J]. North China Earthquake Sciences,36(2):28–37 (in Chinese).
|
中华人民共和国铁道部. 2001. TB 10077—2001 铁路工程岩土分类标准[S]. 北京: 中国铁路出版社: 12−16.
|
Ministry of Railways of the People’s Republic of China. 2001. TB 10077−2001 Code for Rock and Soil Classification of Railway Engineering[S]. Beijing: China Railway Publishing House: 12−16 (in Chinese).
|
Lee S H H. 1990. Regression models of shear wave velocities in Taipei basin[J]. Journal of Chinese Institute of Engineering,13(5):519–532. doi: 10.1080/02533839.1990.9677284
|
Ohta Y,Goto N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes[J]. Earthq Eng Struct Dyn,6(2):167–187.
|
1. |
刘文玉,程正璞,年秀清,陈闫,胡钰铃,覃祖建,邵明正. 基于三维剩余密度结构的松原地震成因. 地震地质. 2024(02): 462-476 .
![]() | |
2. |
于晨,卢军,解滔,刘长生. 2017—2019年松原地区4次中强地震前绥化台地电阻率异常分析. 中国地震. 2023(02): 314-324 .
![]() | |
3. |
张志朋,李君,冯兵,王文青,柴旭超. 2021年青海玛多M_S7.4地震序列精定位与震源机制研究. 地震工程学报. 2022(01): 218-226 .
![]() | |
4. |
阮庆丰,刘俊清,田有,刘财,张宇,蔡宏雷. 松原地区地震发震机制与迁移特点研究. 地球物理学报. 2022(09): 3309-3321 .
![]() | |
5. |
李梦莹,张志宏,焦明若,方禹心. 2018-05-28松原M_S5.7地震地电场变化特征研究. 大地测量与地球动力学. 2022(12): 1276-1280+1299 .
![]() | |
6. |
李梦莹,杨士超,张志宏,孔祥瑞,孙庆山. 2018年松原M_S 5.7地震地电场变化特征. 地震地磁观测与研究. 2022(S1): 120-122 .
![]() | |
7. |
Yu TANG,Aihua WENG,Yue YANG,Shiwen LI,Jianjun NIU,Yanhui ZHANG,Yabin LI,Jianping LI. Connection between earthquakes and deep fluids revealed by magnetotelluric imaging in Songyuan, China. Science China(Earth Sciences). 2021(01): 161-176 .
![]() |
|
8. |
唐裕,翁爱华,杨悦,李世文,牛建军,张艳辉,李亚彬,李建平. 松原地震与流体作用联系的大地电磁证据. 中国科学:地球科学. 2021(01): 134-149 .
![]() | |
9. |
张志宏,郭安宁,李梦莹,黄明威,杨牧萍. 2018年吉林松原M_S5.7地震地磁异常分析. 科学技术与工程. 2021(29): 12406-12414 .
![]() | |
10. |
张洪艳,刘轶男,张帆,卢燕红,张宇. 吉林松原宁江地震序列精定位. 防灾科技学院学报. 2020(01): 32-37 .
![]() | |
11. |
李永生,赵谊,李继业,高峰,石伟. 2018年5月28日吉林松原M_S5.7地震发震构造分析. 地震学报. 2020(01): 12-23+120 .
![]() | |
12. |
阮庆丰,刘财,刘俊清,张宇,郑国栋. 2019年5月18日松原M5.1地震构造机制分析. 吉林大学学报(地球科学版). 2020(06): 1897-1904 .
![]() | |
13. |
李迎春,李锋,王俊菲,许田,王金艳. 2019年黄海M_L4.6地震序列的震源机制和发震构造. 地震学报. 2020(05): 543-551+507 .
![]() | |
14. |
王婷,延军平,李双双,万佳,张玉凤. 帕米尔高原Mw≥6.6级地震时间韵律特征. 高原地震. 2020(04): 6-16 .
![]() | |
15. |
李艳娥,邢成起,陈丽娟,郭祥云,康建红. 2017—2018年吉林松原地震序列研究. 地震学报. 2019(04): 435-444 .
![]() |