Citation: | Qiao F,Bo J S,Zhang Z P,Chang C Y,Wang L. 2020. Correlation between shear wave velocity and buried depth of common soils in Liuzhou city of Guangxi region. Acta Seismologica Sinica,42(1):109−119. doi:10.11939/jass.20190062. DOI: 10.11939/jass.20190062 |
Based on the measured borehole data in the earthquake safety assessment of Liuzhou region, Guangxi, three models (linear, power function, quadratic function models) were used to fit and analyze the correlation between shear wave velocity of soil layer and burial depth in this area. And then the power function model was selected to analyze the correlation between the depth of the soil layer and corresponding shear wave velocity in the area, and the influence of the soil state on the correlation between the two parameters was also discussed, and finally the actual drilling was taken as an example to verify the accuracy and reliability of the model. The obtained results are as follows: ① except artificial filling, there is a strong correlation between the shear wave velocity and the buried depth of common soils in the area, and the correlation can be affected by the region where it is; ② the soil state can significantly improve the prediction accuracy of the model.
蔡宗文. 2003. 福建沿海剪切波速与土层参数定量关系研究[J]. 华南地震,23(3):76–80. doi: 10.3969/j.issn.1001-8662.2003.03.011
|
Cai Z W. 2003. The quantitative analysis between shear wave velocity and soil-layer parameters in Fujian coastal areas[J]. South China Journal of Seismology,23(3):76–80 (in Chinese).
|
陈国兴,徐建龙,袁灿勤. 1998. 南京城区岩土体剪切波速与土层深度的关系[J]. 南京建筑工程学院学报,45(2):32–37.
|
Chen G X,Xu J L,Yuan C Q. 1998. Relation between depth and shear wave velocity of soil and bedrock in Nanjing city[J]. Journal of Nanjing Architectural and Civil Engineering Institute,45(2):32–37 (in Chinese).
|
程祖锋,李萍,李燕,张桂珍. 1997. 深圳地区部分岩土类型剪切波速与深度的关系分析[J]. 工程地质学报,5(2):161–168.
|
Cheng Z F,Li P,Li Y,Zhang G Z. 1997. Analysis of relationship between shear wave velocity and depth of some types of soil and rock in Shenzhen region[J]. Journal of Engineering Geology,5(2):161–168 (in Chinese).
|
丁国瑜,卢演俦. 1983. 华北地块新构造变形基本特点的讨论[J]. 华北地震科学,1(2):1–9.
|
Ding G Y,Lu Y C. 1983. Discussion on the basic characteristics of new tectonic deformation in North China block[J]. North China Earthquake Sciences,1(2):1–9 (in Chinese).
|
国家技术监督局, 中华人民共和国建设部. 1995. GB 50191—1993 构筑物抗震设计规范[S]. 北京: 中国计划出版社: 11−13.
|
State Bureau of Technology Supervision, Ministry of Housing and Urban-Rural Development of the People’s Republic of China. 1995. GB 50191−1993 Design Code for Antiseismic of Special Structures[S]. Beijing: China Planning Press: 11−13 (in Chinese).
|
贺为民,刘明军,杨杰. 2016. 土层剪切波速与埋深关系统计分析和应用[J]. 地震地质,38(4):937–949. doi: 10.3969/j.issn.0253-4967.2016.04.011
|
He W M,Liu M J,Yang J. 2016. Application and statistical analysis of relationship between shear wave velocity and depth of soil-layers[J]. Seismology and Geology,38(4):937–949 (in Chinese).
|
兰景岩,薄景山,吕悦军. 2007. 剪切波速对设计反应谱的影响研究[J]. 震灾防御技术,2(1):19–24. doi: 10.3969/j.issn.1673-5722.2007.01.003
|
Lan J Y,Bo J S,Lü Y J. 2007. Study on the effect of shear wave velocity on the design spectrum[J]. Technology for Earthquake Disaster Prevention,2(1):19–24 (in Chinese).
|
李帅,赵纯青,唐丽华. 2012. 剪切波速在判定石河子市某建设场地类别中的应用[J]. 内陆地震,26(2):180–186. doi: 10.3969/j.issn.1001-8956.2012.02.009
|
Li S,Zhao C Q,Tang L H. 2012. Application on judgment of construction site classification in Shihezi with shear wave velocity[J]. Inland Earthquake,26(2):180–186 (in Chinese).
|
刘华贵,蒋文宇. 2015. 柳州官塘片区红粘土剪切波速与埋深的相关性分析[J]. 地震研究,38(2):280–284.
|
Liu H G,Jiang W Y. 2015. Correlative analysis between shear wave velocity and depth of red clay in Liuzhou Guantang region[J]. Journal of Seismological Research,38(2):280–284 (in Chinese).
|
刘红帅,郑桐,齐文浩,兰景岩. 2010. 常规土类剪切波速与埋深的关系分析[J]. 岩土工程学报,32(7):1142–1149.
|
Liu H S,Zheng T,Qi W H,Lan J Y. 2010. Relationship between shear wave velocity and depth of conventional soils[J]. Chinese Journal of Geotechnical Engineering,32(7):1142–1149 (in Chinese).
|
齐鑫,丁浩. 2012. 下辽河平原区剪切波速与土层埋深关系分析[J]. 世界地震工程,28(3):151–156. doi: 10.3969/j.issn.1007-6069.2012.03.027
|
Qi X,Ding H. 2012. Analysis of relationship between shear wave velocity and depth of soil layers in downstream Liaohe River plain[J]. World Earthquake Engineering,28(3):151–156 (in Chinese).
|
邱志刚,薄景山,罗奇峰. 2011. 土壤剪切波速与埋深关系的统计分析[J]. 世界地震工程,27(3):81–88.
|
Qiu Z G,Bo J S,Luo Q F. 2011. Statistical analysis of relationship between shear wave velocity and depth of soil[J]. World Earthquake Engineering,27(3):81–88 (in Chinese).
|
王强,王兰民,吴志坚,王平. 2014. 天水市岩土体剪切波速与埋深的变化关系[J]. 地震工程与工程振动,34(增刊1):247–252.
|
Wang Q,Wang L M,Wu Z J,Wang P. 2014. Relationship between shear wave velocity and depth of soils and rocks in Tianshui city[J]. Earthquake Engineering and Engineering Dynamics,34(S1):247–252 (in Chinese).
|
汪闻韶. 1994. 土工地震减灾工程中的一个重要参量:剪切波速[J]. 水利学报,25(3):80–84. doi: 10.3321/j.issn:0559-9350.1994.03.012
|
Wang W S. 1994. An important parameter in geotechnical engineering for earthquake disaster mitigation:Shear wave velocity[J]. Journal of Hydraulic Engineering,25(3):80–84 (in Chinese).
|
张龙飞,董斌,史双双,韩晓飞. 2018. 朔州市区土层剪切波速与埋深的统计关系[J]. 华北地震科学,36(2):28–37. doi: 10.3969/j.issn.1003-1375.2018.02.005
|
Zhang L F,Dong B,Shi S S,Han X F. 2018. Shear wave velocity and depth of soil layer in Shuozhou city of Datong basin[J]. North China Earthquake Sciences,36(2):28–37 (in Chinese).
|
中华人民共和国铁道部. 2001. TB 10077—2001 铁路工程岩土分类标准[S]. 北京: 中国铁路出版社: 12−16.
|
Ministry of Railways of the People’s Republic of China. 2001. TB 10077−2001 Code for Rock and Soil Classification of Railway Engineering[S]. Beijing: China Railway Publishing House: 12−16 (in Chinese).
|
Lee S H H. 1990. Regression models of shear wave velocities in Taipei basin[J]. Journal of Chinese Institute of Engineering,13(5):519–532. doi: 10.1080/02533839.1990.9677284
|
Ohta Y,Goto N. 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes[J]. Earthq Eng Struct Dyn,6(2):167–187.
|
1. |
王莉婵,毛国良,郭垚嘉,林庆西. 京津冀地区P_d方法震级估算模型研究. 大地测量与地球动力学. 2025(03): 260-265 .
![]() | |
2. |
彭朝勇,程振鹏,郑钰,徐志强. 考虑P波预警参数的震源破裂特征实时持续估测方法. 地球科学. 2024(02): 391-402 .
![]() | |
3. |
宋晋东,朱景宝,李水龙,王士成,韦永祥,李山有. 基于机器学习预测模型的现地警报级别地震预警试验——以2022年9月5日四川泸定6.8级地震为例. 地球物理学报. 2024(08): 3004-3016 .
![]() | |
4. |
郝美仙,王鑫,张珂,刘颖,尹战军,张建中,郑钰. 基于地震预警参数阈值评估内蒙古地区地震潜在破坏区. 中国地震. 2021(01): 239-248 .
![]() | |
5. |
彭朝勇,郑钰,徐志强,姜旭东,杨建思. 面向地震烈度仪的现地地震动预测模型的构建与验证. 地震学报. 2021(05): 643-655 .
![]() | |
6. |
孙丽,梁建宏,徐志国,刘杰. 虚拟地震学家(VS)方法在中国地震台网中的测试和评估. 中国地震. 2021(04): 843-856 .
![]() | |
7. |
XU Shi-wei,WANG Yu,WANG Sheng-wei,LI Jian-zheng. Research and application of real-time monitoring and early warning thresholds for multi-temporal agricultural products information. Journal of Integrative Agriculture. 2020(10): 2582-2596 .
![]() |
|
8. |
Wuchuan Xu,Xiangyu An,Enlai Li,Chengwei Wang,Li Zhao. Earthquake early warning system in Liaoning, China based on PRESTo. Earthquake Science. 2020(Z1): 281-292 .
![]() |