Ren M,Jiang D D,Huang W,Li X S. 2020. Numerical and theoretical analyses of seismic wave response in non-persistentjointed rock mass. Acta Seismologica Sinica42(1):44−52. doi:10.11939/jass.20190090. DOI: 10.11939/jass.20190090
Citation: Ren M,Jiang D D,Huang W,Li X S. 2020. Numerical and theoretical analyses of seismic wave response in non-persistentjointed rock mass. Acta Seismologica Sinica42(1):44−52. doi:10.11939/jass.20190090. DOI: 10.11939/jass.20190090

Numerical and theoretical analyses of seismic wave response in non-persistent jointed rock mass

More Information
  • Received Date: May 15, 2019
  • Revised Date: December 17, 2019
  • Available Online: April 09, 2020
  • In order to reveal the regulation of seismic stress wave propagation and the distribution of wave amplitude in jointed rock masses, the wave propagation across persistent joints is simulated firstly, and the results are verified to be consistent with analytical results. Then, the horizontal distribution of transmission coefficient and the effect of joint persistency on wave propagation are researched by simulating seismic stress wave propagation across rock masses with a single non-persistent joint. Moreover, the theoretical analysis is proposed to explain the simulation results. The result shows that the joint segments induce wave attenuation, and rock bridges cause the change of the wave propagation direction. On the other hand, the transmission coefficient of stress wave through non-persistent joints is related to the size of rock bridge (Lr) and the diffraction angle (μ). When the diffraction angle is small, the transmission coefficient is mainly affected by the size of rock bridge; otherwise, the size of rock bridge and the diffraction angle both affect the propagation of stress wave across non-persistent joints.

  • Cai J G,Zhao J. 2000. Effects of multiple parallel fractures on apparent attenuation of stress waves in rock masses[J]. Int J Rock Mech Min Sci,37(4):661–682. doi: 10.1016/S1365-1609(00)00013-7
    Francon M. 1986. Recent developments in monochromatic birefringent filters[G]//Trends in Quantum Electronics. Heidelberg: Springer: 93−98.
    Jiao Y Y,Fan S C,Zhao J. 2005. Numerical investigation of joint effect on shock wave propagation in jointed rock masses[J]. J Test Evaluat,33(3):197–203.
    Pyrak-Nolte L J,Myer L R,Cook N G W. 1990. Transmission of seismic waves across single natural fractures[J]. J Geophys Res,95(B6):8617–8638.
    Schoenberg M. 1980. Elastic wave behavior across linear slip interfaces[J]. J Acoust Soc Am,68(5):1516–1521. doi: 10.1121/1.385077
    Wasantha P L P,Ranjith P G,Xu T,Zhao J,Yan Y L. 2014. A new parameter to describe the persistency of non-persistent joints[J]. Eng Geol,181:71–77. doi: 10.1016/j.enggeo.2014.08.003
    Zhao J,Zhao X B,Cai J G. 2006. A further study of P-wave attenuation across parallel fractures with linear deformational behaviour[J]. Int J Rock Mech Min Sci,43(5):776–788. doi: 10.1016/j.ijrmms.2005.12.007
    Zhao X B,Zhao J,Cai J G,Hefny A M. 2008. UDEC modelling on wave propagation across fractured rock masses[J]. Computers Geotechn,35(1):97–104. doi: 10.1016/j.compgeo.2007.01.001
    Zhu J B,Deng X F,Zhao X B,Zhao J. 2013. A numerical study on wave transmission across multiple intersecting joint sets in rock masses with UDEC[J]. Rock Mech Rock Eng,46(6):1429–1442. doi: 10.1007/s00603-012-0352-9
  • Related Articles

  • Cited by

    Periodical cited type(2)

    1. 王再骄,高国明,李业成. 青藏高原及周边地区的重磁异常多尺度横向构造分析. 云南大学学报(自然科学版). 2025(01): 79-87 .
    2. 董兴朋,杨顶辉. 青藏高原东北缘伴随层析成像研究进展. 地球与行星物理论评(中英文). 2025(05): 528-535 .

    Other cited types(1)

Catalog

    Article views (1651) PDF downloads (31) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return