Zhou Z S,Zeng W Z,Liu S Q,Chen W Y. 2020. First arrival picking method by seismic multi-attribute based on weighted K -means clustering algorithm. Acta Seismologica Sinica42(2):177−186. doi:10.11939/jass.20190107. DOI: 10.11939/jass.20190107
Citation: Zhou Z S,Zeng W Z,Liu S Q,Chen W Y. 2020. First arrival picking method by seismic multi-attribute based on weighted K -means clustering algorithm. Acta Seismologica Sinica42(2):177−186. doi:10.11939/jass.20190107. DOI: 10.11939/jass.20190107

First arrival picking method by seismic multi-attribute based on weighted K-means clustering algorithm

More Information
  • Received Date: June 13, 2019
  • Revised Date: October 23, 2019
  • Accepted Date: October 23, 2019
  • Available Online: May 21, 2020
  • For the purpose of improving the accuracy and automation of first arrival picking method, the weighted K-means clustering algorithm is introduced. Firstly, various seismicattributes such as root-mean-squares amplitude, adjacent trace correlation, line integral and dominant frequency of amplitude spectrum are extracted. Then, weighted K-means clustering is performed for seismic attributes to identify the first arrival time window automatically.Finally, combined with phase correction method, this method is applied to realize the pickup of the first arrival time in the time window. The validity and feasibility of the proposed method, which is compared with STA/LTA and BP neural network, are verified by theoretical and practical data tests. The results suggest that the multi-attribute first arrival picking method based on weighted K-means clustering can pick up the first arrival of seismic data with low signal-to-noise ratios quickly and accurately, and enhance the automation of arrival time picking without the artificial identification of time window.

  • 常旭,刘伊克. 2002. 地震记录的广义分维及其应用[J]. 地球物理学报,45(6):839–846. doi: 10.3321/j.issn:0001-5733.2002.06.011
    Chang X,Liu Y K. 2002. The generalized fractal dimension of seismic records and its applications[J]. Chinese Journal of Geophysics,45(6):839–846 (in Chinese).
    陈东,皮德常. 2009. 基于属性加权的改进K-means算法[J]. 电脑知识与技术,5(9):2412–2413.
    Chen D,Pi D C. 2009. Improved K-means algorithm based on the attributes weighted[J]. Computer Knowledge and Technology,5(9):2412–2413 (in Chinese).
    李辉峰,邹强,金文星. 2006. 基于边缘检测的初至波自动拾取方法[J]. 石油地球物理勘探,41(2):151–155.
    Li H F,Zou Q,Jin W X. 2006. Method of automatic first breaks pick-up based on edge detection[J]. Oil Geophysical Prospec-ting,41(2):151–155 (in Chinese).
    孟宇奇, 2018. 基于谱多流形聚类的微地震信号处理[D]. 长春: 吉林大学: 21−37.
    Meng Y Q, 2018. Research on Microseismic Data Processing Based on Spectral Multi-Manifold Cluster Method[D]. Changchun: Jilin University: 21−37 (in Chinese).
    潘树林,高磊,周熙襄,钟本善. 2006. 基于单道边界检测和样条插值的初至波自动拾取[J]. 石油物探,45(3):245–249. doi: 10.3969/j.issn.1000-1441.2006.03.007
    Pan S L,Gao L,Zhou X R,Zhong B S. 2006. Automatic method of first break picking based on edge detection and spline interpolation[J]. Geophysical Prospecting for Petroleum,45(3):245–249 (in Chinese).
    裴正林,余钦范. 1999. 基于小波变换和BP神经网络的地震波初至拾取方法[J]. 勘察科学技术,30(4):61–64. doi: 10.3969/j.issn.1001-3946.1999.04.015
    Pei Z L,Yu Q F. 1999. A wavelet transform and BP neural network-based algorithm for detecting first arrivals on seismic waves[J]. Site Investigation Science and Technology,30(4):61–64 (in Chinese).
    钱光萍. 2001. 基于分形维地震道初至拾取方法研究[D]. 成都: 成都理工大学: 17−42.
    Qian G P. 2001. Study on Fractal-Based For Picking First Arrivals on Seismic Traces[D]. Chengdu: Chengdu University of Technology: 17−42 (in Chinese).
    王永刚, 乐友喜, 张军华. 2007. 地震属性分析技术[M]. 东营: 中国石油大学出版社: 32−82.
    Wang Y G, Le Y X, Zhang J H. 2007. Seismic Attribute Analysis Technique[M]. Dongying: China University of Petroleum Press: 32−82 (in Chinese).
    魏超,郑晓东,李劲松. 2012. 基于量子蒙特卡罗的地震多属性聚类方法[J]. 石油地球物理勘探,47(5):747–753.
    Wei C,Zheng X D,Li J S. 2012. The seismic multi-attribute clustering method based on quantum Monte Carlo method[J]. Oil Geophysical Prospecting,47(5):747–753 (in Chinese).
    赵玄, 严家斌, 胡涛. 2018. 聚类分析在地球物理中的应用进展[J]. 中国科技信息, (15): 103–105.
    Zhao X, Yan J B, Hu T. 2018. Application of cluster analysis in geophysics[J]. China Science and Technology Information, (15): 103–105 (in Chinese).
    朱丹. 2017. 基于FCM的微地震初至自动拾取算法研究[D]. 长春: 吉林大学: 9−33.
    Zhu D. 2017. Study on Automatic Time Picking for Microseismic Data Based on FCM Algorithm[D]. Changchun: Jilin University: 9−33 (in Chinese).
    庄东海,肖春燕,颜永宁. 1994. 利用人工神经网络自动拾取地震记录初至[J]. 石油地球物理勘探,29(5):659–664.
    Zhuang D H,Xiao C Y,Yan Y N. 1994. Seismic first arrival pickup using artificial neural network[J]. Oil Geophysical Prospec-ting,29(5):659–664 (in Chinese).
    Chen Y K. 2018. Automatic microseismic event picking via unsupervised machine learning[J]. Geophys J Int,212(1):88–102. doi: 10.1093/gji/ggx420
    Coppens F. 1985. First arrival picking on common-offset trace collections for automatic estimation of static corrections[J]. Geophys Prospect,33(8):1212–1231. doi: 10.1111/j.1365-2478.1985.tb01360.x
    Harrington P. 2013. Machine Learning in Action[M]. Greenwich: Manning Publications: 184−198.
    Maeda N. 1985. A method for reading and checking phase time in auto-processing system of seismic wave data[J]. Zisin,38(3):365–379. doi: 10.4294/zisin1948.38.3_365
    McCormack M D,Zaucha D E,Dushek D W. 1993. First-break refraction event picking and seismic data trace editing using neural networks[J]. Geophysics,58(1):67–68. doi: 10.1190/1.1443352
    Molyneux J B,Schmitt D R. 1999. First-break timing: Arrival onset times by direct correlation[J]. Geophysics,64(5):1492–1501. doi: 10.1190/1.1444653
  • Related Articles

Catalog

    Article views (916) PDF downloads (52) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return