Xu Xinxue, Chen Yukun, Gao Wuping, Yuan Hang, Yan Chengguo, Lei Qing, Zheng Jun. 2020: The electrical structure beneath the Yarlung Zangbo suture zone in southern Tibet. Acta Seismologica Sinica, 42(4): 406-418. DOI: 10.11939/jass.20190165
Citation: Xu Xinxue, Chen Yukun, Gao Wuping, Yuan Hang, Yan Chengguo, Lei Qing, Zheng Jun. 2020: The electrical structure beneath the Yarlung Zangbo suture zone in southern Tibet. Acta Seismologica Sinica, 42(4): 406-418. DOI: 10.11939/jass.20190165

The electrical structure beneath the Yarlung Zangbo suture zone in southern Tibet

More Information
  • Received Date: November 17, 2019
  • Revised Date: March 10, 2020
  • Available Online: August 26, 2020
  • Published Date: July 14, 2020
  • In order to study the tectonic relationship between the shallow and deep active faults as well as deep seismogenic machanism around Xigaze city in South Tibet, totally 48 wide-band magnetotelluric sounding points were deployed on a 108 km long line across the Xietongmen-Xigaze section of the Yarlung Zangbo suture zone (YZSZ) , hence 2D inversion technique was employed to reveal the deep electrical structure whose depth range is less than 200 km. This south-north trending profile passes through the Himalayan block, YZSZ and Lhasa-Gangdise block in turn. Most of the crust beneath the Himalayan block is of high resistance, and at the north side of the Zhongba-Langjie xue continental margin displaced mixed terrane, it develops a huge north-dipping high conductive body that stretches downward into the upper mantle. There exists a 10 km wide trumpet-shaped low resistance tunnel and two typical high conductive bodies beneath the YZSZ, of which the shallow one is south-dipping whereas the deep one is north-dipping. Besides, in the crust and upper mantle beneath the YZSZ, there also develops two high resistance bodies, the southern one is nearly vertical or south-dipping ophiolite, and the northern one is upright Gangdise granite. Hence it expresses like a low-resistance channel clamped by those two bodies stretching downward into the upper mantle. Lhasa-Gangdise block is dominated by high resistance and the high conductive bodies are generally developed within the middle and lower crust. The subduction of Indian plate leads to the local thicken and thinning of the crust and mantle, therefore there exhibits an obvious gradient change nearby themajor suture belt (MSB) , and the YZSZ control the migration channel of crust-mantle material.
  • 郭新峰,张元丑,程庆云,高锐,潘渝. 1990. 青藏高原亚东—格尔木地学断面岩石圈电性研究[J]. 中国地质科学院院报,(21):191–202.
    Guo X F,Zhang Y C,Cheng Q Y,Gao R,Pan Y. 1990. Magnetotelluric studies along Yadong-Golmud geosciences transect in Qinghai-Xizang Plateau[J]. Acta Geosicientia Sinica,(21):191–202 (in Chinese).
    黄汲清, 陈炳蔚. 1987. 中国及邻区特提斯海的演化[M]. 北京: 地质出版社: 51–90.
    Huang J Q, Chen B W. 1987. The Evolution of the Tethys in China and Adjacent Regions[M]. Beijing: Geological Publishing House: 51–90 (in Chinese).
    金胜,叶高峰,魏文博,邓明,景建恩. 2007. 青藏高原西缘壳幔电性结构与断裂构造:札达—泉水湖剖面大地电磁探测提供的依据[J]. 地球科学:中国地质大学学报,32(4):474–480.
    Jin S,Ye G F,Wei W B,Deng M,Jing J E. 2007. The electrical structure and fault feature of crust and mantle of western Tibet plateau:Based on results of magnetotelluric survey along profile Zhada-Quanshuihu[J]. Earth Science:Journal of China University of Geosciences,32(4):474–480 (in Chinese).
    金胜. 2009. 青藏高原的壳幔电性结构特征及其动力学意义[D]. 北京: 中国地质大学(北京): 90–102.
    Jin S. 2009. The Characteristics of Crust-Mantle Electrical Structure and Dynamics within Tibetan Plateau[D]. Beijing: China University of Geosciences (Beijing): 90–102 (in Chinese).
    卢占武,高锐,李秋生,管烨,张季生,贺日政,黄立言. 2006. 中国青藏高原深部地球物理探测与地球动力学研究(1958—2004)[J]. 地球物理学报,49(3):753–770. doi: 10.3321/j.issn:0001-5733.2006.03.019
    Lu Z W,Gao R,Li Q S,Guan Y,Zhang J S,He R Z,Huang L Y. 2006. Deep geophysical probe and geodynamic study on the Qinghai−Tibet plateau (1958−2004)[J]. Chinese Journal of Geophysics,49(3):753–770 (in Chinese).
    潘裕生, 孔祥儒. 1998. 青藏高原岩石圈结构演化和动力学[M]. 广州: 广东科技出版社: 135.
    Pan Y S, Kong X R. 1998. Lithosphere Structure, Evolution and Dynamics of Qinghai-Xizang (Tibetan)Plateau[M]. Guangzhou: Guangdong Science and Technology Press: 135 (in Chinese).
    谭捍东,魏文博,Unsworth M,邓明,金胜,Booker J,Jones A. 2004. 西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J]. 地球物理学报,47(4):685–690. doi: 10.3321/j.issn:0001-5733.2004.04.020
    Tan H D,Wei W B,Unsworth M,Deng M,Jin S,Booker J,Jones A. 2004. Crustal electrical conductivity structure beneath the Yarlung Zangbo Jiang suture in the southern Xizang plateau[J]. Chinese Journal of Geophysics,47(4):685–690 (in Chinese).
    魏文博,金胜,叶高峰,邓明,谭捍东,Unsworth M,Booker J,Jones A G,Li S H. 2006. 西藏高原中、北部断裂构造特征:INDEPTH ( Ⅲ )-MT观测提供的依据[J]. 地球科学:中国地质大学学报,31(2):257–265.
    Wei W B,Jin Y,Ye G F,Deng M,Tan H D,Unsworth M,Booker J,Jones A G,Li S H. 2006. Features of the faults in center and North Tibetan plateau:Based on results of INDEPTH ( Ⅲ )−MT[J]. Earth Science:Journal of China University of Geosciences,31(2):257–265 (in Chinese).
    吴功建,高锐,余钦范,程庆云,孟令顺,董学斌,崔作舟,尹周勋,沈显杰,周烑秀. 1991. 青藏高原“亚东—格尔木地学断面”综合地球物理调查与研究[J]. 地球物理学报,34(5):552–562. doi: 10.3321/j.issn:0001-5733.1991.05.003
    Wu G J,Gao R,Yu Q F,Cheng Q Y,Meng L S,Dong X B,Cui Z Z,Yin Z X,Shen X J,Zhou Y X. 1991. Integrated investigations of the Qinghai-Tibet Plateau along the Yadong-Golmud geoscience transect[J]. Acta Geophysica Sinica,34(5):552–562 (in Chinese).
    熊盛青, 周伏洪, 姚正煦. 2001. 青藏高原中西部航磁调查[M]. 北京: 地质出版社.
    Xiong S Q, Zhou F H, Yao Z X. 2001. Aeromagnetic Survey in Central and Western Qinghai-Tibet Plateau[M]. Beijing: Geological Publishing House (in Chinese).
    许志琴,李海兵,唐哲民,戚学祥,李化启,蔡志慧. 2011. 大型走滑断裂对青藏高原地体构架的改造[J]. 岩石学报,27(11):3157–3170.
    Xu Z Q,Li H B,Tang Z M,Qi X X,Li H Q,Cai Z H. 2011. The transformation of the terrain structures of the Tibet Plateau through large-strike-slip faults[J]. Acta Petrologica Sinica,27(11):3157–3170 (in Chinese).
    叶高峰,金胜,魏文博,Unsworth M. 2007. 西藏高原中南部地壳与上地幔导电性结构[J]. 地球科学:中国地质大学学报,32(4):491–499.
    Ye G F,Jin S,Wei W B,Unsworth M. 2007. Research of conductive structure of crust and upper mantle beneath the South-Central Tibetan Plateau[J]. Earth Science:Journal of China University of Geosciences,32(4):491–499 (in Chinese).
    赵文津,Nelson K D,徐中信,Brown L D,Kuo J T,Meissner R,熊嘉育,INDEPTH项目. 1997. 雅鲁藏布江缝合带的双陆内俯冲构造与部分熔融层特征:INDEPTH项目结果的初步综合[J]. 地球物理学报,40(3):325–335. doi: 10.3321/j.issn:0001-5733.1997.03.005
    Zhao W J,Nelson K D,Xu Z X,Brown L D,Kuo J T,Meissner R,Xiong J Y,INDEPTH Project Team. 1997. Double intracontinental underthrusting structure of the Yarlung Zangbo suture and different molten layers:A comprehensive study of Indepth′s results[J]. Acta Geophysica Sinica,40(3):325–335 (in Chinese).
    赵文津,赵逊,史大年,刘葵,江万,吴珍汉,熊嘉育,郑玉坤. 2002. 喜马拉雅和青藏高原深剖面(INDEPTH)研究进展[J]. 地质通报,21(11):691–700. doi: 10.3969/j.issn.1671-2552.2002.11.001
    Zhao W J,Zhao X,Shi D N,Liu K,Jiang W,Wu Z H,Xiong J Y,Zheng Y K. 2002. Progress in the study of deep (INDEPTH)profiles in the Himalayas and Qinghai−Tibet plateau[J]. Geological Bulletin of China,21(11):691–700 (in Chinese).
    赵文津,刘葵,蒋忠惕,吴珍汉,赵逊,史大年,熊嘉育,Mechie J,Brown L,Hearn T,Guo J R,Haines S S. 2004. 西藏班公湖—怒江缝合带:深部地球物理结构给出的启示[J]. 地质通报,23(7):623–635. doi: 10.3969/j.issn.1671-2552.2004.07.001
    Zhao W J,Liu K,Jiang Z T,Wu Z H,Zhao X,Shi D N,Xiong J Y,Mechie J,Brown L,Hearn T,Guo J R,Haines S S. 2004. Bangong Co-Nujiang suture zone,Tibet:A suggestion given by deep geophysical structure[J]. Geological Bulletin of China,23(7):623–635 (in Chinese).
    朱仁学,胡祥云. 1995. 格尔木—额济纳旗地学断面岩石圈电性结构的研究[J]. 地球物理学报,38(增刊2):46–57.
    Zhu R X,Hu X Y. 1995. Study on the resistivity structure of the lithosphere along the Golmud-Ejin Qi geoscience transect[J]. Acta Geophysica Sinica,38(S2):46–57 (in Chinese).
    Egbert G D,Booker J R. 1986. Robust estimation of geomagnetic transfer functions[J]. Geophys J Int,87(1):173–194. doi: 10.1111/j.1365-246X.1986.tb04552.x
    Groom R W,Bailey R C. 1995. Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions[J]. Geophysics,56(4):496–518.
    McNeice G W,Jones A G. 2001. Multisite,multifrequency tensor decomposition of magnetotelluric data[J]. Geophysics,66(1):158–173. doi: 10.1190/1.1444891
    Nelson K D,Zhao W J,Brown L D,Kuo J,Che J K,Liu X W,Klemperer S L,Makovsky Y,Meissner R,Mechie J,Kind R,Wenzel F,Ni J,Nabelek J,Chen L S,Tan H D,Wei W B,Jones A G,Jones J,Unsworth M,Kidd W S F,Hauck M,Alsdorf D,Ross A,Cogan M,Wu C D,Sandvol E,Edwards M. 1996. Partially molten middle crust beneath southern Tibet:Synthesis of project indepth results[J]. Science,274(5293):1684–1688. doi: 10.1126/science.274.5293.1684
    Unsworth M J,Jones A G,Wei W,Marquis G,Gokarn S G,Spratt J E,Bedrosian P,Booker J,Chen L S,Clarke G,Li S H,Lin C H,Dneg M,Jin S,Solon K,Tan H D,Ledo J,Roberts B,INDEPTH−MT team. 2005. Crustal rheology of the Himalaya and southern Tibet inferred from magnetotelluric data[J]. Nature,438(7064):78–81. doi: 10.1038/nature04154
    Zhang Z J,Deng Y F,Teng J W,Wang C Y,Gao R,Chen Y,Fan W M. 2011. An overview of the crustal structure of the Tibetan plateau after 35 years of deep seismic soundings[J]. J Asian Earth Sci,40(4):977–989. doi: 10.1016/j.jseaes.2010.03.010
  • Related Articles

Catalog

    Article views (1085) PDF downloads (77) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return