Xu Guolin, Qi Haiao, Zhang Yafei, Bai Yashuang. 2020: Influence of permanent displacement of ground motion on seismic response of structures. Acta Seismologica Sinica, 42(4): 482-490. DOI: 10.11939/jass.20200011
Citation: Xu Guolin, Qi Haiao, Zhang Yafei, Bai Yashuang. 2020: Influence of permanent displacement of ground motion on seismic response of structures. Acta Seismologica Sinica, 42(4): 482-490. DOI: 10.11939/jass.20200011

Influence of permanent displacement of ground motion on seismic response of structures

More Information
  • Received Date: January 16, 2020
  • Revised Date: June 16, 2020
  • Available Online: September 18, 2020
  • Published Date: July 14, 2020
  • When calculating the seismic response of a structure based on the displacement excitation, the displacement excitation is obtained by integration of the velocity, which is obtained by integration of the acceleration records. At the same time, the acceleration noise must be removed. However, limited by the method for eliminating noise from acceleration records, the permanent displacement of the ground motion in the near-fault earthquake acceleration records is often weakened or even eliminated. This makes it impossible for researchers to judge the effect of permanent displacement of ground motion on the seismic response of structures excited by displacement. In this paper, the authors deduce the pseudo-velocity spectra formula of single degree of freedom system based on displacement excitation, verify the accuracy of the formula with the constructed pulse displacement time history, and then analyze the effect of the permanent displacement of the ground motion on the pseudo-velocity spectra. Firstly, the noise is executed on the acceleration records via wavelet transform, and gound motion with permanent displacement is remained. And then the permanent displacement is wiped out using reducing trend item method or filtering method from those records. Those excitations are used to calculate pseudo-velocity spectra. The results show that in short period, the pseudo-velocity spectra are similar whether ground motions contain the permanent displacement or not; in medium-long period, the pseudo-velocity spectra excited by non-permanent displacement excitation are lower than those by displacement excitation with permanent displacement, and this kind of difference are enlarged when the filtering method is used. Therefore, for seismic design of long-period structures, the ground motion with permanent ground displacement excitation should be used, or reducing trend item method is used to wipe out permanent displacement.
  • 陈勇,陈鲲,俞言祥. 2007. 用集集主震记录研究近断层强震记录的基线校正方法[J]. 地震工程与工程振动,27(4):1–7.
    Chen Y,Chen K,Yu Y X. 2007. Base line correction method for near-fault accelerograms using Chi-Chi main shock record[J]. Earthquake Engineering and Engineering Vibration,27(4):1–7 (in Chinese).
    惠迎新,王克海. 2015. 基于多点激励位移输入模型的跨断层桥梁地震动输入方法[J]. 东南大学学报(自然科学版),45(3):557–562.
    Hui Y X,Wang K H. 2015. Earthquake motion input method for bridges crossing fault based on multi-support excitation displacement input model[J]. Journal of Southeast University (Natural Science Edition),45(3):557–562 (in Chinese).
    李建波,陈健云,林皋. 2004. 相互作用分析中地震动输入长周期校正研究[J]. 大连理工大学学报,44(4):550–555.
    Li J B,Chen J Y,Lin G. 2004. Study of long-period correction of seismic accelerogram for dynamic interaction analysis[J]. Journal of Dalian University of Technology,44(4):550–555 (in Chinese).
    李吉涛,杨庆山. 2010. 地震波基线漂移的处理方法[J]. 北京交通大学学报,34(1):95–99.
    Li J T,Yang Q S. 2010. A correction method for baseline drift of seismic wave[J]. Journal of Beijing Jiaotong University,34(1):95–99 (in Chinese).
    荣棉水,李小军,卢滔. 2007. 局部地形对入射P波谱特性的影响分析[J]. 西北地震学报,29(4):297–302.
    Rong M S,Li X J,Lu T. 2007. Effect analysis of topography on the spectrum property of incident P waves[J]. Northwestern Seismological Journal,29(4):297–302 (in Chinese).
    荣棉水,彭艳菊,喻畑,杨宇. 2014. 近断层强震观测记录基线校正的优化方法[J]. 土木工程学报,47(增刊2):300–306.
    Rong M S,Peng Y J,Yu T,Yang Y. 2014. Optimized baseline correction method for the near-fault observation strong motion records[J]. China Civil Engineering Journal,47(S2):300–306 (in Chinese).
    王国权,周锡元. 2004. 921台湾集集地震近断层强震记录的基线校正[J]. 地震地质,26(1):1–14.
    Wang G Q,Zhou X Y. 2004. Baseline correction of near fault ground motion recordings of the 1999 Chi-Chi,Taiwan earthquake[J]. Seismology and Geology,26(1):1–14 (in Chinese).
    王体强,王永志,袁晓铭,汤兆光,王海,段雪锋. 2019. 基于振动台试验的加速度积分位移方法可靠性研究[J]. 岩土力学,40(增刊1):565–573.
    Wang T Q,Wang Y Z,Yuan X M,Tang Z G,Wang H,Duan X F. 2019. Reliability analysis of acceleration integral displacement method based on shaking table tests[J]. Rock and Soil Mechanics,40(S1):565–573 (in Chinese).
    谢俊举,温增平,高孟潭. 2013. 利用强震数据获取汶川地震近断层地面永久位移[J]. 地震学报,35(3):369–379.
    Xie J J,Wen Z P,Gao M T. 2013. Recovery of co-seismic deformation from strong motion records during the Wenchuan earthquake[J]. Acta Seismologica Sinica,35(3):369–379 (in Chinese).
    张海明, 陈晓非. 2004. 根据数字强震加速度记录恢复位移波形的方法: 以1999年9月21日台湾集集地震为例[C]//中国大陆地震学与地球内部物理学研究进展: 庆贺曾融生院士八十寿辰. 北京: 地震出版社: 694–707.
    Zhang H M, Chen X F. 2004. The method of recovering displacement waveforms based on digital strong motion records: Take 1999·9·21 Chi-Chi earthquake for example[C]//Advances in Seismology and Physics of Earth’s Interior in China: In Honor of Academician Zeng Rongsheng’s 80th Birthday. Beijing: Seismological Press: 694–707 (in Chinese).
    周宝峰,于海英,温瑞智,谢礼立. 2013. 一种识别永久位移的新方法[J]. 土木工程学报,46(增刊2):135–140.
    Zhou B F,Yu H Y,Wen R Z,Xie L L. 2013. A new way of permanent displacement identification[J]. China Civil Engineering Journal,46(S2):135–140 (in Chinese).
    周雍年,章文波,于海英. 1997. 数字强震仪记录的长周期误差分析[J]. 地震工程与工程振动,17(2):1–9.
    Zhou Y N,Zhang W B,Yu H Y. 1997. Analysis of long-period for accelerograms recorded by digital seismographs[J]. Earthquake Engineering and Engineering Vibration,17(2):1–9 (in Chinese).
    Baker J W. 2007. Quantitative classification of near-fault ground motions using wavelet analysis[J]. Bull Seismol Soc Am,97(5):1486–1501. doi: 10.1785/0120060255
    Boore D M. 2001. Effect of baseline corrections on displacements and response spectra for several recordings of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,91(5):1199–1211.
    Boore D M,Stephens C D,Joyner W B. 2002. Comments on baseline correction of digital strong-motion data:Examples from the 1999 Hector Mine,California,earthquake[J]. Bull Seismol Soc Am,92(4):1543–1560. doi: 10.1785/0120000926
    Chanerley A A,Alexander N A. 2010. Obtaining estimates of the low-frequency ‘fling’,instrument tilts and displacement timeseries using wavelet decomposition[J]. Bull Earthq Eng,8(2):231–255. doi: 10.1007/s10518-009-9150-5
    Chiu H C. 1997. Stable baseline correction of digital strong-motion data[J]. Bull Seismol Soc Am,87(4):932–944.
    Hızal C,Turan G. 2017. Importance of static correction and damping in the analysis of a cable-stayed bridge subjected to displacement loading[J]. J Bridge Eng,22(6):04017009. doi: 10.1061/(ASCE)BE.1943-5592.0001041
    Iwan W D,Moser M A,Peng C Y. 1985. Some observations on strong-motion earthquake measurement using a digital accelerograph[J]. Bull Seismol Soc Am,75(5):1225–1246.
    Li Q,Wang R Q,Huang W F,Zheng G J. 2005. Method for morphological filtering in seismic data processing[J]. Petrol Sci,2(4):20–29.
    Tsai H C. 1998. Modal superposition method for dynamic analysis of structures excited by prescribed support displacements[J]. Comput Struct,66(5):675–683. doi: 10.1016/S0045-7949(97)00108-9
    Wang G Q,Boore D M,Igel H,Zhou X Y. 2003. Some observations on colocated and closely spaced strong ground-motion records of the 1999 Chi-Chi,Taiwan,earthquake[J]. Bull Seismol Soc Am,93(2):674–693. doi: 10.1785/0120020045
    Xu G L,Zhang L X,Bai Y S,Sun H. 2020. Method for solving dynamic equilibrium equations based on displacement excitation[J]. Earthq Eng Eng Vib,19(2):423–433. doi: 10.1007/s11803-020-0571-0

Catalog

    Article views (1532) PDF downloads (62) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return