Sun Xiaolong, Xiang Yang, Li Yuan. 2020: Hydraulic response of water level to seismic wave, earth tide and barometric pressure in deep well:A case study of the Fanxian well in Henan Province. Acta Seismologica Sinica, 42(6): 719-731. DOI: 10.11939/jass.20200036
Citation: Sun Xiaolong, Xiang Yang, Li Yuan. 2020: Hydraulic response of water level to seismic wave, earth tide and barometric pressure in deep well:A case study of the Fanxian well in Henan Province. Acta Seismologica Sinica, 42(6): 719-731. DOI: 10.11939/jass.20200036

Hydraulic response of water level to seismic wave, earth tide and barometric pressure in deep well:A case study of the Fanxian well in Henan Province

More Information
  • Received Date: March 15, 2020
  • Revised Date: April 20, 2020
  • Available Online: January 18, 2021
  • Published Date: November 14, 2020
  • The dynamic response of water level in a deep well to periodic loading provides natural experimental data for studying the response mechanism of deep well-aquifer system. Taking the Fanxian well in Henan Province, China, as an example, the hydraulic response characteristics of well water level induced by seismic wave, solid tide and barometric pressure was analyzed by using different hydraulic response models. The hydraulic parameters of the Fanxian well-aquifer were estimated based on the relevant hydraulic response models. The results show that in the process of high-frequency loading, the water flow in the well-aquifer system is mainly horizontal; while in the process of low-frequency loading, it is combined with horizontal and vertical water flow. The transmissivity estimated by the seismic response model with high frequency by period of 10—102 s is 7.20×10−3 m2/s, which is larger than the value 2.02×10−6 m2/s estimated using tidal response model with low frequency of period of 3.75×104 s, and the estimation using barometric response model with the medium frequency of period of 102—104 s is between them, as 3.44×10−5 m2/s. Based on those results, we conclude that the pattern of water flow in the well-aquifer system is related to the frequency of periodic loading, and the scale effect exists while estimating the hydraulic parameters of the aquifer based on different hydraulic response models. The understanding obtained in this study can not only provide theoretical mechanism explanation for dynamic response of well water level, but also provide technical support for in-situ hydraulic parameters measurement in target aquifer.
  • 李海龙,宋金颖,万力,柳富田. 2013. 承压含水层井孔储存效应对气压波动引起的井孔水位波动的影响[J]. 水文地质工程地质,40(4):1–6.
    Li H L,Song J Y,Wan L,Liu F T. 2013. The response of well-aquifer systems to barometric loading[J]. Hydrogeology &Engineering Geology,40(4):1–6 (in Chinese).
    廖欣,刘春平,杨贤和,田育萍,石云,唐彦东. 2013. 承压井水位对含水层潮汐应力响应是否满足不排水条件的检验[J]. 地震学报,33(2):234–242.
    Liao X,Liu C P,Yang X H,Tian Y P,Shi Y,Tang Y D. 2013. Undrained examination of tidal response of water-level in confined wells[J]. Acta Seismologica Sinica,33(2):234–242 (in Chinese).
    石云,刘春平,廖欣,唐彦东,万飞. 2013. 潮汐水位振幅和位相变化研究及其在地下水异常分析中的应用[J]. 地震学报,35(3):421–429. doi: 10.3969/j.issn.0253-3782.2013.03.013
    Shi Y,Liu C P,Liao X,Tang Y D,Wan F. 2013. Research of tidal water level amplitude and phase and application to causation analysis of well water level changes[J]. Acta Seismologica Sinica,35(3):421–429 (in Chinese).
    张艳,符力耘,陈学忠,曹呈浩,赵连锋,马玉川. 2019. 相邻两井对大地震的不同水力响应模型研究:页岩影响分析[J]. 地球物理学报,62(1):143–158. doi: 10.6038/cjg2019L0612
    Zhang Y,Fu L Y,Chen X Z,Cao C H,Zhao L F,Ma Y C. 2019. Study of different hydraulic response models to large earthquakes in two adjacent wells:The effect of shales[J]. Chinese Journal of Geophysics,62(1):143–158 (in Chinese).
    张昭栋,郑金涵,张广城. 1988. 水井含水层系统与水位观测系统对固体潮与地震波的响应[J]. 地震学报,10(2):171–182.
    Zhang Z D,Zheng J H,Zhang G C. 1988. Response of well-aquifer system and water level observation system to Earth tides and seismic waves[J]. Acta Seismologica Sinica,10(2):171–182 (in Chinese).
    张昭栋,郑金涵,张广城,靖继才. 1989. 承压井水位对气压动态过程的响应[J]. 地球物理学报,32(5):539–549. doi: 10.3321/j.issn:0001-5733.1989.05.006
    Zhang Z D,Zheng J H,Zhang G C,Jing J C. 1989. Response of water level of confined well to dynamic process of barometric pressure[J]. Chinese Journal of Geophysics,32(5):539–549 (in Chinese).
    张昭栋,王昌文,高玉斌. 1991. 水井(鲁07井)的管径变化和对固体潮的响应[J]. 地球物理学报,34(2):203–209. doi: 10.3321/j.issn:0001-5733.1991.02.009
    Zhang Z D,Wang C W,Gao Y B. 1991. The relationship between variation of radius in the well Shandong Province No.7 and response to Earth tide[J]. Chinese Journal of Geophysics,34(2):203–209 (in Chinese).
    郑香媛,刘澜波. 1990. 深井水位固体潮的调和分析结果[J]. 地球物理学报,33(5):556–565. doi: 10.3321/j.issn:0001-5733.1990.05.008
    Zheng X Y,Liu L B. 1990. The harmonic analysis results of the well tides in deep boreholes[J]. Chinese Journal of Geophysics,33(5):556–565 (in Chinese).
    Acworth R I,Brain T. 2008. Calculation of barometric efficiency in shallow piezometers using water levels,atmospheric & Earth tide data[J]. Hydrogeol J,16(8):1469–1481. doi: 10.1007/s10040-008-0333-y
    Bower D R,Heaton K C. 1978. Response of an aquifer near Ottawa to tidal forcing and the Alaskan earthquake of 1964[J]. Canad J Earth Sci,15(3):331–340. doi: 10.1139/e78-039
    Bradbury K R, Muldoon M A. 1990. Hydraulic Conductivity Determinations in Unlithified Glacial and Fluvial Materials[M]. Philadelphia: ASTM: 138–151.
    Brodsky E E,Roeloffs E,Woodcock D,Gall I,Manga M. 2003. A mechanism for sustained groundwater pressure changes induced by distant earthquakes[J]. J Geophys Res,108(B8):2390. doi: 10.1029/2002JB002321
    Cooper H H Jr,Bredehoeft J D,Papadopu I S,Bennett R R. 1965. The response of well-aquifer systems to seismic waves[J]. J Geophys Res,70(16):3915–3926. doi: 10.1029/JZ070i016p03915
    Elkhoury J E,Brodsky E E,Agnew D C. 2006. Seismic waves increase permeability[J]. Nature,441(7097):1135–1138. doi: 10.1038/nature04798
    Elkhoury J E,Niemeijer A,Brodsky E E,Marone C. 2011. Laboratory observations of permeability enhancement by fluid pressure oscillation of in situ fractured rock[J]. J Geophys Res,116(B2):B02311.
    Evans K,Beavan J,Simpson D,Mousa S. 1991. Estimating aquifer parameters from analysis of forced fluctuations in well level:An example from the Nubian formation near Aswan,Egypt:3. Diffusivity estimates for saturated and unsaturated zones[J]. J Geophys Res,96(B7):12161–12191. doi: 10.1029/91JB00957
    Hsieh P A,Bredehoeft J D,Farr J M. 1987. Determination of aquifer transmissivity from Earth tide analysis[J]. Water Resour Res,23(10):1824–1832. doi: 10.1029/WR023i010p01824
    Hussein M E A,Odling N E,Clark R A. 2013. Borehole water level response to barometric pressure as an indicator of aquifer vulnerability[J]. Water Resour Res,49(10):7102–7119. doi: 10.1002/2013WR014134
    Jacob C E. 1940. On the flow of water in an elastic artesian aquifer[J]. Eos,Trans Am Geophys Union,21(2):574–586. doi: 10.1029/TR021i002p00574
    Liao X,Wang C Y,Liu C P. 2015. Disruption of groundwater systems by earthquakes[J]. Geophys Res Lett,42(22):9758–9763. doi: 10.1002/2015GL066394
    Manga M,Beresnev I,Brodsky E E,Elkhoury J E,Elsworth D,Ingebritsen S E,Mays D C,Wang C Y. 2012. Changes in permeability caused by transient stresses:Field observations,experiments,and mechanisms[J]. Rev Geophys,50(2):RG2004.
    Rasmussen T C,Crawford L A. 1997. Identifying and removing barometric pressure effects in confined and unconfined aquifers[J]. Groundwater,35(3):502–511. doi: 10.1111/j.1745-6584.1997.tb00111.x
    Roeloffs E. 1996. Poroelastic techniques in the study of earthquake-related hydrologic phenomena[J]. Adv Geophys,37:135–195. doi: 10.1016/S0065-2687(08)60270-8
    Rojstaczer S. 1988. Determination of fluid flow properties from the response of water levels in wells to atmospheric loading[J]. Water Resour Res,24(11):1927–1938. doi: 10.1029/WR024i011p01927
    Rojstaczer S,Riley F S. 1990. Response of the water level in a well to Earth tides and atmospheric loading under unconfined conditions[J]. Water Resour Res,26(8):1803–1817. doi: 10.1029/WR026i008p01803
    Rovey II C W,Cherkauer D S. 1995. Scale dependency of hydraulic conductivity measurements[J]. Groundwater,33(5):769–780. doi: 10.1111/j.1745-6584.1995.tb00023.x
    Shi Z M,Wang G C,Wang C Y,Manga M,Liu C L. 2014. Comparison of hydrological responses to the Wenchuan and Lushan earthquakes[J]. Earth Planet Sci Lett,391:193–200. doi: 10.1016/j.jpgl.2014.01.048
    Shi Z M,Wang G C. 2016. Aquifers switched from confined to semiconfined by earthquakes[J]. Geophys Res Lett,43(21):11166–11172. doi: 10.1002/2016GL070937
    Shi Z M,Zhang S C,Yan R,Wang G C. 2018. Fault zone permeability decrease following large earthquakes in a hydrothermal system[J]. Geophys Res Lett,45(3):1387–1394. doi: 10.1002/2017GL075821
    Shi Y,Liao X,Zhang D,Liu C P. 2019. Seismic waves could decrease the permeability of the shallow crust[J]. Geophys Res Lett,46(12):6371–6377. doi: 10.1029/2019GL081974
    Sun X L,Wang G C,Yang X H. 2015. Coseismic response of water level in Changping well,China,to the MW9.0 Tohoku earthquake[J]. J Hydrol,531:1028–1039. doi: 10.1016/j.jhydrol.2015.11.005
    Sun X L,Xiang Y,Shi Z M. 2018. Estimating the hydraulic parameters of a confined aquifer based on the response of groundwater levels to seismic Rayleigh waves[J]. Geophys J Int,213(2):919–930. doi: 10.1093/gji/ggy036
    Sun X L,Xiang Y,Shi Z M,Hu X J,Zhang H. 2019. Sensitivity of the response of well-aquifer systems to different periodic loadings:A comparison of two wells in Huize,China[J]. J Hydrol,572:121–130. doi: 10.1016/j.jhydrol.2019.02.029
    Tamura Y,Sato T,Ooe M,Ishiguro M. 1991. A procedure for tidal analysis with a Bayesian information criterion[J]. Geophys J Int,104(3):507–516.
    Venedikov A P,Arnoso J,Vieira R. 2003. VAV:A program for tidal data processing[J]. Comput Geosci,29(4):487–502. doi: 10.1016/S0098-3004(03)00019-0
    Wang C Y. 2007. Liquefaction beyond the near field[J]. Seismol Res Lett,78(5):512–517. doi: 10.1785/gssrl.78.5.512
    Wang C Y,Liao X,Wang L P,Wang C H,Manga M. 2016. Large earthquakes create vertical permeability by breaching aquitards[J]. Water Resour Res,52(8):5923–5937. doi: 10.1002/2016WR018893
    Wang C Y,Doan M L,Xue L,Barbour A J. 2018. Tidal response of groundwater in a leaky aquifer:Application to Oklahoma[J]. Water Resour Res,54(10):8019–8033. doi: 10.1029/2018WR022793
    Wang C Y,Zhu A Y,Liao X,Manga M,Wang L P. 2019. Capillary effects on groundwater response to Earth tides[J]. Water Resour Res,55(8):6886–6895. doi: 10.1029/2019WR025166
    Xue L,Li H B,Brodsky E E,Xu Z Q,Kano Y,Wang H,Mori J J,Si J L,Pei J L,Zhang W,Yang G,Sun Z M,Huang Y. 2013. Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone[J]. Science,340(6140):1555–1559. doi: 10.1126/science.1237237
    Yan R,Wang G C,Shi Z M. 2016. Sensitivity of hydraulic properties to dynamic strain within a fault damage zone[J]. J Hydrol,543:721–728. doi: 10.1016/j.jhydrol.2016.10.043
    Zhang Y,Fu L Y,Ma Y C,Hu J H. 2016. Different hydraulic responses to the 2008 Wenchuan and 2011 Tohoku earthquakes in two adjacent far-field wells:The effect of shales on aquifer lithology[J]. Earth Planets Space,68:178. doi: 10.1186/s40623-016-0555-5
    Zhang H,Shi Z,Wang G,Sun X,Yan R,Liu C. 2019a. Large earthquake reshapes the groundwater flow system:Insight from the water‐level response to earth tides and atmospheric pressure in a deep well[J]. Water Resour Res,55(5):4207–4219. doi: 10.1029/2018WR024608
    Zhang Y,Wang C Y,Fu L Y,Zhao B,Ma Y C. 2019b. Unexpected far-field hydrological response to a great earthquake[J]. Earth Planet Sci Lett,519:202–212. doi: 10.1016/j.jpgl.2019.05.007
    Zhu A Y,Wang C Y. 2020. Response of leaky aquifers to Earth tides:Interpreted with numerical simulation[J]. J Hydrol,581:124458. doi: 10.1016/j.jhydrol.2019.124458
  • Related Articles

  • Cited by

    Periodical cited type(9)

    1. 丁俊柯,马传璧,张万辉,赵建明,王震坤. 基于EEMD方法提取唐山井水位固体潮响应特征. 地下水. 2024(04): 63-65 .
    2. 吴明,杨晓东,刘洁. 石泉井水位异常与九寨沟7.0级地震关联性探讨. 地震工程学报. 2023(02): 441-446 .
    3. 吕芳,穆慧敏,李艳,郭文峰,姚林鹏,宫静芝. 利用微水试验方法研究井-含水层水力参数及其与地震的对应关系. 地震地质. 2023(03): 638-651 .
    4. 刘伟,白细民,吕少杰,史浙明,齐之钰,何冠儒. 基于井水位气压效应计算含水层的水力参数. 地震地质. 2023(03): 652-667 .
    5. 李继业,晏锐,张思萌,胡澜缤,孟令蕾,周晨. 井水位潮汐响应与小地震调制作用的关系. 地震地质. 2023(03): 668-688 .
    6. 刘阁,姬霄鹤,郭少峰,李志涛. 范县井水位对远场大震的同震响应特征. 华北地震科学. 2023(03): 74-79 .
    7. 洪旭瑜,陈祥开,秦双龙,林加宝. M_S≥6.0地震引起的永安井水位同震响应特征研究. 华南地震. 2023(03): 39-45 .
    8. 胡米东,毛华锋,陈启林,王皓,张杰,霍雨佳,黄群. 茅山断裂带周边地区流体井水位观测特征及机理分析. 高原地震. 2022(04): 21-28 .
    9. 何冠儒,史浙明. 地下水对气压和固体潮响应研究进展. 地震研究. 2021(04): 541-549 .

    Other cited types(0)

Catalog

    Article views (852) PDF downloads (109) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return